August 02, 2017

Placing Sponsored-Content Associated With An Image

Yushi Jing
Shumeet Baluja

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

Recommended Citation
Jing, Yushi and Baluja, Shumeet, "Placing Sponsored-Content Associated With An Image", Technical Disclosure Commons, (August 02, 2017)
http://www.tdcommons.org/dpubs_series/611

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.
PLACING SPONSORED-CONTENT ASSOCIATED WITH AN IMAGE

ABSTRACT

Techniques are described for placing sponsored-content associated with an image. The techniques may include matching a first image for which a sponsored-content item is to be selected with a reference image. A sponsored-content item to be presented may be selected based on an association between the reference image and the sponsored-content item to be presented.

DETAILS

Interactive media (e.g., “web” content on the Internet) has great potential for improving the targeting of advertisements (“ads”) to receptive audiences. An advertisement or an “ad” refers to any form of communication in which one or more products, services, ideas, messages, people, organizations or other items are identified and promoted (or otherwise communicated). Ads are not limited to commercial promotions or other communications. An ad may be a public service announcement or any other type of notice, such as a public notice published in electronic press or a broadcast. An ad may be referred to or include sponsored content. For example, some websites provide information search functionality that is based on keywords entered by the user seeking information. This user query can be an indicator of the type of information of interest to the user. By comparing the user query to a list of keywords specified by an advertiser, it is possible to provide targeted ads to the user.

Another form of online advertising is ad syndication, which allows advertisers to extend their marketing reach by distributing ads to additional partners. For example, third party online publishers can place an advertiser’s text or image ads on web properties with desirable content to drive online customers to the advertiser’s website.

The following three figures depict example user interfaces in image-based ad targeting systems. In general, the first figure shows an example user interface in a search service that receives a query from a user, retrieves and presents relevant search results from an index of content, and presents advertisements based on the search results. More particularly, the presented advertisements are based on an image included in the search results.
As depicted above, the user interface includes a title showing a search query entered by a user for which search results are presented, e.g., the two search results illustrated. Each search result includes a hypertext link, respectively, to the web pages identified in the search index used by the search service. Each search result includes a snippet of text extracted from those web pages. One of the depicted example search results also includes an image result returned with the search result. For example, the image may be a graphic image, a digital photograph, or a frame from a video.

The user interface also includes advertisements identified based on the search results. Each ad includes a hypertext link to the advertiser’s respective web page. Each ad includes ad text and one illustrated example ad also includes an ad image, e.g., a graphic image, a digital photograph, or a frame from a video. The ad image may be different from, substantially similar to, or even the same as the search result image returned with the search results. The ads are identified and presented based on the search result image, as described in more detail herein.
The figure above depicts an example user interface presented by a content provider. As with the previous figure, the user interface includes a title and a list of content items. The content items may be, for example, articles, discussion threads, music, audio, video, graphics, search results, and/or webpage listings. Each content item includes a hypertext link to an associated content item (such as a web page, a music file, or a video file). Each content item includes descriptions and one illustrated example content item also includes an image that may be, for example, a graphic image, a digital photograph, or a frame from a video.

The user interface illustrated above also includes an ad identified based on the image included in the content item. The ad includes a hypertext link to the advertiser’s web page, ad text, and an ad image, which may be, for example, a graphic image, a digital photograph, or a frame from a video. The ad is identified and presented based on the content image, as described in more detail herein.
The figure above depicts an example user interface presented by a provider of an online photograph application. As illustrated in this figure, the user interface includes a title and a list of photograph items for a user, e.g., a subscriber of the online photograph application. Each photograph item in this example includes a hypertext link to an associated photograph, a small representation (e.g., a thumbnail) of the associated photograph, and a corresponding description. The user interface also includes an ad identified based on the photograph, as described in more detail herein. The ad includes ad text and a hypertext link to the advertiser's web page.

The figure above illustrates an example image-based ad targeting system that includes a computer system with software for an executable image matching process and three persistent data stores: a sub-image data store for storing sub-images, an associations data store for storing associations between ads and sub-images, and an ads data store for storing ads. The data stores may be one or more databases, a collection of files (such as XML files or a file in any picture format, for example).
storage format, such as .emz, .gif, .jpg or .mpg), or another type of data collection. The ad targeting system is configured to receive an image for which an ad is to identified and execute the matching process that accesses the data stores to identify ad based on the received image.

The flow chart above illustrates a process for matching an ad to an image. In the illustrated image matching process, the ad targeting system receives and parses the image. For example, the ad targeting system may use computer vision techniques to identify a portion of the image to be used for ad targeting. The identified portion of the image may be referred to, for example, as a sub-image, which may be a region-of-interest, a patch, a local feature, or another portion of an image. The ad targeting system searches the sub-image data store for a sub-image that matches the sub-image parsed from the received image (“parsed sub-image”) and identifies, in the association data store, an association between the sub-image found in the sub-image data store and an advertisement stored in the ads data store. Based on the association between the sub-image in the sub-image data store and the advertisement in the ads data store, the ad targeting system retrieves the identified ad from the ads data store and enables presentation of the identified ad.
The figure above illustrates an example of an environment for an image-based ad targeting system. In some cases, one or more advertisers can directly, or indirectly, enter, maintain, and track ad information in an advertising management system. The advertising management system may be an ad targeting system as described herein. The advertising management system is configured to identify an ad based on an image and to store sub-images used to match a portion of a received image, ads, and associations between ads, and sub-images. The ads may be in the form of graphical ads, such as banner ads, text only ads, image ads, audio ads, video ads, ads combining one of more of any of such components, etc. The ads may also include embedded information, such as links, meta-information, and/or machine executable instructions. One or more publishers may submit requests for ads to the system. The system responds by sending ads to the requesting publisher for placement on one or more of the publisher’s media properties (e.g., websites video content, or other content) based on one or more images.

Other entities, such as users and the advertisers, can provide usage information to the system, such as, for example, whether or not a conversion or click-through related to an ad has occurred. In contrast to an impression which occurs when a user views one of the ads (such as when a page of content including the ad is displayed and/or rendered to the audience member), a “click-through” may be said to occur when a user selects a presented ad by clicking on the ad, embedded hypertext links, executable code, and any type of user selection related to the presented ad, where the click or another type of selection typically directs the user to the advertiser’s web site or the advertiser’s online or real world presence.

A conversion may be said to occur when a user consummates a transaction related to a previously served ad. What constitutes a conversion may vary from case to case and may be determined in a variety of ways. For example, it may be the case that a conversion occurs when a user clicks on an ad, is referred to the advertiser’s web page, and consummates a purchase there before leaving that web page. Alternatively, a conversion may be defined as a user being shown an ad, and making a purchase on the advertiser’s web page within a predetermined time (e.g., a seven days). Many other definitions of what constitutes a conversion are possible.

This usage information can include measured or observed user behavior related to ads that have been served. The system performs financial transactions, such as crediting the
publishers and charging the advertisers based on the usage information. The system also may use the usage information, in lieu of or in addition to, impression information to select ads for presentation.

A computer network, such as a local area network (LAN), wide area network (WAN), the Internet, or a combination thereof, connects the advertisers, the system, the publishers, and the users.

One example of a publisher is a general content server that receives requests for content (e.g., articles, discussion threads, music, video, graphics, search results, web page listings, information feeds, etc.), and retrieves the requested content in response to the request. The content server may submit a request for ads to an advertising management system. The ad request may include a number of ads desired. The ad request may also include content request information that identifies an image for which an ad is to be returned. This content request information can include the image itself, a storage location or retrieval mechanism for the image, or another type of information that identifies the image. The content request information also can include identification of content itself (e.g., image, page, video, or other content document), a category corresponding to the content or the content request (e.g., arts, business, computers, arts-movies, arts-music, etc.), part or all of the content request, content age, content type (e.g., text, graphics, video, audio, mixed media, etc.), geo-location information, etc.

In some instances, the content server can combine the requested content with one or more of the ads provided by the system. This combined content and ads can be sent to the user that requested the content for presentation in a viewer (e.g., a browser or other content display system). The content server can transmit information about the ads back to the advertising management system, including information describing how, when, and/or where the ads are to be rendered (e.g., in Hypertext Markup Language (HTML) or JavaScript).

Another example publisher is a search service. A search service can receive queries for search results. In some examples, the queries may include images. In response to a query, the search service can retrieve relevant search results from an index of documents (e.g., from an index of web pages). Search results can include, for example, lists of web page titles, snippets of text extracted from those web pages, hypertext links to those web pages, images, videos, and may be grouped into a predetermined number of (e.g., ten) search results.
The search service can submit a request for ads to the system. The request may include, or identify an image to be used for ad targeting. The request may also include a number of ads desired. This number may depend on the search results, the amount of screen or page space occupied by the search results, the size and shape of the ads, etc. In some instances, the number of desired ads will be from one to ten, or from three to five. The request for ads may also include the query (as entered or parsed), information based on the query (such as geo-location information, whether the query came from an affiliate and an identifier of such an affiliate, or whether the query was an image), and/or information associated with, or based on, the search results. Such information may include, for example, identifiers related to the search results (e.g., document identifiers or “docIDs”), images or videos included in the search results, scores related to the search results (e.g., information retrieval (“IR”) scores), snippets of text extracted from identified documents (e.g., web pages), full text of identified documents, feature vectors of identified documents, etc. In some cases, IR scores can be computed from, for example, dot products of feature vectors corresponding to a query and a document, page rank scores, and/or combinations of IR scores and page rank scores, etc.

The search service can combine the search results with one or more of the ads provided by the system. This combined information can then forwarded to the user that requested the content. The search results can be maintained as distinct from the ads, so as not to confuse the user between paid advertisements and presumably neutral search results.

Finally, the search service can transmit information about the ad and when, where, and/or how the ad was to be rendered back to the system.

As can be appreciated from the foregoing, the advertising management system can serve publishers, such as content servers and search services. The system permits serving of ads targeted to documents served by content servers. For example, a network or inter-network may include an advertising management system serving targeted ads in response to requests from a search service with ad spots for sale. Suppose that the inter-network is the World Wide Web. The search service crawls much or all of the content. Some of this content will include ad spots (also referred to as “inventory”) available. More specifically, one or more content servers may include one or more documents. Documents may include images, videos, web pages, email, content, embedded information (e.g., embedded media), meta-information and machine
executable instructions, and ad spots available. The ads inserted into ad spots in a document can vary each time the document is served or, alternatively, can have a static association with a given document.

The flowchart above is for an example process for image-based ad targeting for a content publisher. The process may be executed, for example, by an ad targeting system, such as the ad targeting system or the ad management system described herein. In general, a publisher of a webpage may enroll in an ad syndication program to increase revenue by receiving and displaying ads targeted to content on the webpage. The publisher sends to the ad targeting system a request for ads to be targeted based on an image. For example, an image to be included in the content web page to be displayed may be used to target an ad that is displayed along with the content including the image. The ad targeting system uses the received image to select targeted ads for the webpage. These ads are then returned to the publisher who may combine them with the webpage content, or alternatively, the webpage content may be combined with the ads by ad targeting system and sent directly to a user for whom the content is to be displayed. The steps of process do not have to occur in a specific order and at least some steps can occur in parallel.

The image-matching ad targeting processes described each match an image for which ads are to be identified (which may be referred to as a received image) to a reference image based on local features. The received image includes one or more regions-of-interest and each of the regions-of-interest includes one or more local features. For example, a received image may include a logo and an image background where the logo is identified as a region-of-interest, which, in turn, includes local features, such as various portions of the logo. The reference image may correspond to the logo (i.e., the reference region-of-interest in this example), which may be decomposed into various local features. In a more particular example, an image may be received that includes the Eiffel Tower. The Eiffel Tower may be identified as a region-of-interest, and the tip of the Eiffel Tower may be identified as one or many local features of the region-of-interest (i.e., the Eiffel Tower in this example).
In general, an ad targeting process may select an ad by matching a target image to a reference image based on identification of the region-of-interest in the target image, decomposing the region-of-interest into local features, matching local features of the target image with reference local features, identifying a reference image corresponding to the reference local features that match the local features of the target image, and identifying an ad associated with the identified reference image. More particularly, the ad targeting process begins when an ad request is received by the ad targeting system from a content publisher. As described herein, the ad request includes context information that is used to select targeted ads. While the content information can include a variety of content types, for the purposes of illustration only, this example describes content information including one or more image files.

The ad targeting system analyzes the received image (here, the image file included in the ad request) to identify one or more regions-of-interest. Regions-of-interest are portions or sections of the image file that are visually distinguishable and stable. Regions-of-interest are visually distinguishable and stable are likely to be, or relate to, the subject or subjects of the image. For example, an image of a chair in a room may be analyzed to identify the chair as a region-of-interest where the background (such as a floor, ceiling and walls of the room in which the chair is depicted) is not included in the region-of-interest. In another example, a chair and a person standing in the room each may be identified as a region-of-interest.

The ad targeting system identifies local features associated with identified region-of-interest(s). Sometimes local features may be identified for each identified region-of-interest, although not all regions-of-interest need necessarily be decomposed into one or more local features.

The ad targeting system identifies matching regions-of-interest. This may be accomplished, for example, by comparing the local features identified for the received or target image with stored local features associated with regions-of-interest. The local features, associations with regions-of-interest, and/or regions-of-interest may be stored in an image repository. The matching may be performed by computer vision techniques or another type of pattern matching process. The image repository may contain regions-of-interest that advertisers have selected, or bid on, to associate with one or more ads, as described more fully later.
The ad targeting system identifies ads corresponding to regions-of-interest in the image repository that indirectly are matched, based on matching local features, to the target regions-of-interest from the received image. For example, the ad targeting system may search for an association between an identified sub-image and an ad. In one example, a sub-image may include a pointer, a link, or otherwise identify one or more advertisements to be presented based on the sub-image. In another example, stored association data may be searched to identify ad(s) to be presented with the sub-image.

In some cases, usage information, such as whether or not a conversion or click-through has occurred may be collected, stored and used based on a region-of-interest or sub-image. For example, information for the number of times a region-of-interest or sub-image has been clicked-through by users may be used to determine relevancy of an ad, such as, by weighing a region-of-interest or sub-image based on the number of times the region-of-interest or sub-image.

The ad targeting system enables presentation of the ad(s) associated with the sub-images that match the received image for which ads are to be identified. This may be accomplished, for example, by transmitting or otherwise delivering the ad to the requesting publisher system. Alternatively or additionally, the ad targeting system may combine ads with content provided by the publisher system and presented to a user of the publisher system.

The flowchart above is another example process for image-based ad targeting. This example process may be executed, for example, by an ad targeting system or an ad management system as described herein. The process is performed to provide ads based on search results returned by a search service and, similarly to the process described above, decompose an image into one or more regions-of-interest and further decompose one or more regions-of-interest into one or more local features, which, in turn, are used to match reference local features. As already described herein, search engine providers may desire to present search results along with ads targeted to the search results. Because images may be presented along with, or as part of, search results, ads may be targeted to the images, rather than, or in addition to, ads targeted to the textual search results. The steps of the process do not have to occur in a specific order and at least some steps can occur in parallel.
Search results including an image are received. For example, a request for ads that includes search results or an image for which ads are to be identified may be received from a provider of a search service. In another example, this process may be performed by a search service.

The ad targeting system analyzes the image to identify one or more regions-of-interest, identify one or more local features included in one or more regions-of-interest by decomposing a region-of-interest into local features, identify matching one or more regions-of-interest based on local features shared by, or similar to, reference local features, identify one or more ads associated with one or more of the matched regions-of-interest, and enable presentation of the one or more ads associated with the one or more region-of-interest found to match the target image for which ads are to be identified. This may be accomplished, for example, by techniques described herein.

The figures above are example user interfaces displaying ads based on images. In the example shown on the left, the user interface is from a photography website and includes a window displaying a photograph of a computer. A publisher of the photography website may be participating in an ad syndication program. The publisher of the photography website requests ads targeted to the contents of the window and presents the targeted ads in the window. As described herein, when the publisher system generates a webpage including the computer in window for display, a request including the computer image is sent to an ad targeting system.

In the example shown, the image of the computer displayed in window is sent along with the request for ads to an ad targeting system, such as the ad targeting systems or the advertising
management systems described herein. The ad targeting system analyzes the image to identify the sub-image of the computer, identifies a matching sub-image in stored images what that associated with ads, and identifies the ads that are associated with the stored image of a computer found to match the computer image. The ad targeting system, for example, may analyze the image to identify one or more regions-of-interest, decompose one or more regions-of-interest into one or more local features, match the decomposed local features to reference local features to identify a matching reference region-of-interest, which, in turn, is associated with one or more ads to be presented. Sometimes ads are selected from the identified ads based on advertiser bids. For example, ads that have the highest associated bid are retrieved and returned to the publisher to be provided with the displayed web page.

In the example shown, five ads related to the computer image shown in window have been returned and used to populate the window. However, any number of targeted ads may be supported. The ads shown in window are hyperlinks to web pages of corresponding advertisers.

Turning to the second example user interface shown above, a user of the photography website has continued to a different photograph illustrated by the image of the dog and a tree. As a result, the ads in window have been updated to reflect the change. When the new page was requested by the user a new ad request was made by the publisher to the advertising management system. The request included the image of the dog and tree shown in window. The image was analyzed to locate regions-of-interest. In this example, there are two regions-of-interest, a dog and a tree. The ad targeting system decomposes both regions-of-interest into local features, which, in turn, are compared with the local features stored in the image database. Ads associated with the regions-of-interest corresponding to local features found to match the target local features were retrieved and used to populate the window according to the amount bid on each image. Because the dog and the tree were identified as regions-of-interest, the ads displayed in the window are both pet and tree related, reflecting the type of ad that may have been associated with an image of a dog or an image of a tree.
The flowchart above depicts an example process for presenting images for bidding for an image with which to present ads. The example process is described with respect to a region-of-interest, though different granularities of images may be used. Also, although the process is described with respect to bidding on a single region-of-interest and a single ad, the process may be used to receive bids for multiple regions-of-interest and/or advertisements. The steps of process do not have to occur in a specific order and at least some steps can occur in parallel. As described herein, advertisers may bid on a particular image in an image database to associate with a desired ad. However, it may be difficult for an advertiser to determine what an appropriate bid for a particular image is or may otherwise desire to know what bids have been placed on similar images. In general, to help establish an appropriate bid, the particular image that an advertiser is interested in may be compared against the database of images to locate similar reference images. Bids associated with these reference images may then be presented to the advertiser as suggested bids.

More particularly, an image-based ad targeting system may present ads based on images and associated bids placed by advertisers. The ad targeting system executing process receives an image (or indication thereof) on which an advertiser may place a bid. In some instances, the advertiser may select an image from a repository of images available to be associated with an ad. For example, an advertiser may wish to have an advertisement for a shoe store appear when a particular shoe image is displayed. The advertiser may browse a repository to locate available images of shoes. When the advertiser has found a suitable shoe image or images the advertiser may select them for bidding.

Additionally or alternatively, an advertiser can submit, upload or otherwise provide an image or images to be associated with an ad and a bid. For example, the advertiser may wish to have a particular ad display when an image of the advertiser’s logo is displayed. Accordingly, the advertiser may submit one or more images of the logo to be associated with one or more ads. To increase the likelihood of a match, an advertiser may provide more than one images to be matched, and perhaps many more than one. In some instances, an advertiser may provide tens or hundreds of image variations of a logo or product to increase the likelihood of an image of the logo or product being matched.
Further, in some examples, the advertiser may annotate the image to highlight a desired region-of-interest. Because an image may contain several regions-of-interest that may not be germane to the advertiser’s business, the advertiser may wish to specify the particular feature that the advertiser wishes to associate with a desired ad. Continuing the example given above, the advertiser may have one or more images of the desired logo. Many of the images may feature the logo on cars, or t-shirts, or may also include objects that the advertiser is not interested in associating the ad with. Accordingly, the advertiser may annotate the image to point out, highlight or otherwise identify the desired region-of-interest of the image. In some instances, advertisers may circle, highlight or otherwise identify the desired regions-of-interest on the image using a selection tool included in a user interface, for example.

The ad targeting system searches for one or more similar regions-of-interest associated with bids. For example, the ad targeting system may decompose a region-of-interest and search into one or more local features and search an image repository for reference local features similar to the target local features decomposed from the target region-of-interest. The image repository may be searched for reference local features using image and object recognition techniques, for example. Because the reference local features may not be identical to the decomposed local features, a particular statistical threshold used to locate the reference local features may be lower than the threshold used to match database local features when locating associated advertisements.

In some instances, the received image (rather than a region-of-interest) may be used to identify local features. Additionally or alternatively, regions-of-interest or another type of sub-image of the received image may be used to identify similar regions-of-interest or sub-images in the repository. In some instances, regions-of-interest may be categorized or classified to indicate the contents of the image or to generally describe the subject of the image. These categories may be used to locate reference images instead of, or in addition to, searching the image database using image and object recognition techniques as described above.

The ad targeting system presents suggested bid for received image based on bids associated with similar regions-of-interest. For example, the ad targeting system may present the advertiser with the identified reference regions-of-interest along with associated bids. The suggested bid may be computed by averaging the maximum bids of the reference regions-of-
interest identified, or using a weighted average of the maximum bids of the reference regions-of-interest where more popular regions-of-interest are given a higher weight, for example. Any number of statistical methods may be used to calculate the suggested bid. The bids may be presented using a user interface, e.g., as described herein.

The ad targeting system receives from the advertiser a bid to be associated with the received region-of-interest and identify an advertisement to be presented based on the regions-of-interest. The received region-of-interest, bid and advertisement are stored for later use in identifying an advertisement based on the image. For example, the ad may be stored in a sub-image data store, the association may be stored in an associations data store, and the ad may be stored in an ads data store.

In addition, the advertiser may bid on one or more of the presented reference sub-images. The advertiser may provide an additional advertisement to associate with the reference image, or may use the same advertisement used for the desired image.

The figure above illustrates an example user interface for bidding in an image-based ad targeting system. Using the user interface, an advertiser may bid to have an ad or ads associated with a selected image. The associated ad may be presented when the selected image appears in
the contents of a webpage or search engine results and the bid is the highest bid or among the highest bids for the image, for example.

An image of a computer to bid on is displayed in the image window. For example, the advertiser may have provided (e.g., present or upload) the image. The advertiser may have selected the image from a repository of images.

The user interface also displays in reference window reference images that are identified based on image shown in image window. Each of the reference images in image window includes an associate maximum bid that have been entered by another advertiser for the reference image, though the reference images need not necessarily be presented with associated bids. As shown in the window, three images of computers have been displayed as reference images. The displayed reference images have received maximum bids of five, seven, and nine dollars. The reference images may be determined using object or image recognition techniques to identify reference images with similar features, referencing categories or classifications associated with the images, or a combination of both.

Using the displayed maximum bids as guidance, the advertiser may determine an appropriate bid for the selected image. The advertiser may enter the bid in the text box displayed in window, and submit the entered bid by activating the associated button labeled “Bid”, for example.

Further, the user interface enables an advertiser to make additional bids on one or more of the displayed reference images. After viewing one or more of the reference images displayed in a window, the advertiser may place bids on the displayed reference images instead of, or in addition to, the selected image. Accordingly, the advertiser may enter the bids in the text boxes (i.e., labeled “Your bid”) underneath each of the reference images in the window.

Techniques similar to those described with respect to still images may be applied to video to enable presentation of ads associated with an image presented in video content. Video content may include multiple frames, with each frame including an image. The frames are displayed in rapid succession to create the illusion of motion to a viewer.
The figure presented above shows an example of an environment for providing advertisements for video content items. A “video content item” is an item of content that includes content that may be perceived visually when played, rendered, or decoded. A video content item includes video data, and optionally audio data and metadata. Video data includes content in the video content item that may be perceived visually when the video content item is played, rendered, or decoded. Audio data includes content in the video content item that may be perceived aurally when the video content item is played, decoded, or rendered. A video content item may include video data and any accompanying audio data regardless of whether or not the video content item is ultimately stored on a tangible medium. A video content item may include, for example, a live or recorded television program, a live or recorded theatrical or dramatic work, a music video, a televised event (e.g., a sports event, a political event, a news event, etc.), video voicemail, etc. Each of different forms or formats of the same video data and accompanying audio data (e.g., original, compressed, packetized, streamed, etc.) may be considered to be a video content item (e.g., the same video content item, or different video content items).

A video content item may also include many types of associated data. Examples of types of associated data include video data, audio data, closed-caption or subtitle data, a transcript, content descriptions (e.g., title, actor list, genre information, first performance or release date, etc.), related still images, user-supplied tags and ratings, etc. Some of this data, such as the description, may refer to the entire video content item, while other data (e.g., the closed-caption data) may be temporally-based or time-coded.
The environment includes, or is communicably coupled with, an advertisement provider system (having access to advertisement repository), a content provider system, and one or more user devices, at least some of which communicate across network. In general, the advertisement provider system may provide relevant advertising content (“ad content”) or other relevant content to a video content item. The advertisement provider system may be a version of an advertising management system. By way of example, reference is made to delivering ad content, though other forms of content (e.g., other content item types) may be delivered. The presented content may be provided by the content provider system through the network. The ad content may be distributed, through network, to one or more user devices before, during, or after presentation of the material. In some configurations, advertisement provider system may be coupled with an advertising repository storing advertisements that may be presented with various types of content, including audio and/or video content. The selection of advertisements for presentment with the video content item is determined based on images. For example, an ad may be targeted for presentation in a video content item based on an image in one or more frames of the video content item.

Video content may be consumed at various client locations, using various devices. Examples of the various devices include customer premises equipment which is used at a residence or place of business (e.g., computers, video players, video-capable game consoles, televisions or television set-top boxes, etc.), a mobile telephone with video functionality, a video player, a laptop computer, a set top box, a game console, a car video player, etc. Video content may be transmitted from various sources including, for example, terrestrial television (or data) transmission stations, cable television (or data) transmission stations, satellite television (or data) transmission stations, via satellites, and video content servers (e.g., Webcasting servers, podcasting servers, video streaming servers, video download Websites, etc.), via a network such as the Internet for example, and a video phone service provider network such as the Public Switched Telephone Network (“PSTN”) and the Internet, for example.

Ad content may include text, graphics, still-images, video, audio, audio and video, banners, links (such as advertising providing a hyperlink to an advertiser’s website), and other web or television programming related data. As such, ad content may be formatted differently, based on whether the ad content is primarily directed to websites, media players, email, television programs, closed captioning, etc. For example, ad content directed to a website may...
be formatted for display in a frame within a web browser. In other examples, ad content may be
delivered in a Real Simple Syndication (RSS) feed, or ad content may be delivered relative to a
radio item (such as before, during or after a radio item). As yet another example, ad content
directed to a video player may be presented “in-stream” as video content is played in the video
player. In some instances, in-stream ad content may replace the video or audio content in a
video or audio player for some period of time or may be inserted between portions of the video
or audio content. An in-stream advertisement may include video, audio, text, animated images,
still images, or some combination thereof.

The content provider system may present video content to user devices through the
network. The content provider system may be a publisher system as described herein. The
content provider system may include web servers where the content includes webpages or other
content written in HTML, or in any language suitable for authoring webpages. In general,
content provider system may include systems from users, web publishers, and other entities
capable of distributing video content over a network. For example, a web publisher may post a
video file on a publicly available web server for download and playing by other users. The
content provider system may make the content accessible, for example, through a known
Uniform Resource Locator (URL).

The content provider system may receive requests for video content. The content
provider system may retrieve the requested video content in response to, or otherwise service, the
request. The content provider system may broadcast video content as well (e.g., providing
content though not necessarily responsive to a request).

Content provided by content provider system may include news, weather, entertainment,
or other consumable textual, audio, or video media. More particularly, the content may include
various resources, such as documents (e.g., webpages, plain text documents, Portable Document
Format (PDF) documents, and images), video or audio clips, etc. In some cases, the content may
be graphic-intensive, media-rich data, such as, for example, Flash-based content that presents
video and sound media.

The environment includes one or more user devices. The user device may include a
desktop computer, laptop computer, a media player (e.g., an MP3 player, a streaming audio
player, a streaming video player, a television, a computer, a mobile device, a DVD player, etc.),
a mobile phone, a browser facility (e.g., a web browser application), an e-mail facility, telephony means, a set top box, a television device, a radio device or other device that may access advertisements and other content via network. The content provider system may permit user device to access content (e.g., video files for downloading or streaming).

The network facilitates wireless or wireline communication between the advertisement provider system, the content provider system, and any other local or remote computers (e.g., a user device). The network may be all or a portion of an enterprise or secured network. In another example, the network may be a virtual private network (VPN) between the content provider system and the user device across a wireline or a wireless link. While illustrated as a single or continuous network, the network may be logically divided into various sub-nets or virtual networks without departing from the scope of this disclosure, so long as at least a portion of the network may facilitate communications between the advertisement provider system, content provider system, and at least one client (e.g., a user device). In certain situations, the network may be a secure network associated with the enterprise and certain local or remote clients.

Examples of network include a local area network (LAN), a wide area network (WAN), a wireless phone network, a Wi-Fi network, a WiMax network, a broadband network, and the Internet.

In some examples, a video content item is combined with one or more of the ads provided by the advertisement provider system, for example, based on an image appearing in the video content item. This combined information including the content of the content item and ad(s) is then forwarded toward a user device that requested the content item or that configured itself to receive the content item, for presentation to a user.

The content provider system may transmit information about the ads and how, where or when the ads are to be rendered based on an image in the video content item back to the advertisement provider system through the network. Alternatively, or in addition, such information may be provided back to the advertisement provider system by some other means.

In some configurations, the content provider system includes advertisement media as well as other content. In such a case, the advertisement provider system may determine and inform the content provider system which advertisements to send to the user device, for example.
The flowchart illustrated above is for an example process for processing video content items for images and retrieving associated ads. In some situations, the process may be performed such that the video content item is preprocessed to associate ads with images prior to enabling viewing of the video. Additionally or alternatively, the process may be used to identify ads based on images in the video while the video is being viewed or streamed for viewing. In some examples, the video content item may be preprocessed to identify images in the video content item and the ads may be associated with the images at a later time, such as while the video is being viewed or streamed for viewing. The steps of the process do not have to occur in a specific order and at least some steps can occur in parallel.

A video content item is received for processing. The video content item may be preprocessed to locate images in the various frames that may have associated advertisements. Alternatively or additionally, the video content item may be processed as the video is being viewed or streamed for viewing. As described above, a user or advertiser may have bid to have an ad displayed with a particular image. It may be desirable to also display the ad when the image, or a similar image, appears in a video content item. The ad may be displayed in the same window as the video content item, or may be displayed in a separate window.

The frames of the video content item are analyzed to find regions-of-interest. In some cases, every frame of the video content item is analyzed to identify regions-of-interest. Alternatively, because video content items may contain a large number of frames for each second of video content, and regions-of-interest typically remain visible in a video content item for one or more seconds, some sampling rate may be chosen for frame analysis. For example, every twenty-four frames may be selected for analysis.

The identified regions-of-interest are decomposed into local features, which are used to search against the reference local features associated with one or more reference regions-of-interest. The target local features images may be matched against reference local features using image or object recognition techniques. A local feature may be considered a match, if the one or more identified local features match with a confidence level greater than a selected threshold,
for example. Stored one or more region(s)-of-interest that match local features are identified, and the ads associated with the one or more regions-of-interest are retrieved.

The retrieved ads are associated with the video content item. The ads may be associated with the video content item such that when a frame of the video content item is displayed that contains one or more images with associated ads, the ads are retrieved and displayed at the same time that the video content item is played. The ads may be displayed in an overlay on top of a media player currently processing the video content item, or in a separate window, for example.

In some instances, the ads or references to the ads may be embedded into the video content item and decoded or retrieved by a media player capable of recognizing the embedded ads. In some instances, the ads or references to the ads may be stored in a separate file that indicates where and how the ads may be presented to the user during video content item playback.

The figure above shows an example user interface illustrating advertising content displayed on a screen with video content where the displayed ads are based on an image. The user interface illustrates an example web browser user interface. However, the content shown in the user interface can be presented in a webpage, an MP3 player, a streaming audio player, a streaming video player, a television, a computer, a mobile device, etc. The content shown in the user interface may be provided by an advertisement provider, a content provider, another networked device, or some combination of those providers.

As shown, the user interface includes a video player region including an image on which an ad presented in ad region is based. The video display region may include a media player for
presenting text, images, video, or audio, or any combination thereof. The ad region displays advertisements (e.g., banner ads, flash-based video/audio ads, scrolling ads, etc.) based on an image shown in the video player region. The ad displayed in ad region may be associated with an image in the video player region.

The flowchart above is for an example process for retrieving ads associated with images in a video content item. For example, the process may be used to present ads in an ad region. In addition to or in lieu of preprocessing a video content item, e.g., as described above, the frames of the video content item may be analyzed for images with associated ads as the video frames are presented. The steps of process do not have to occur in a specific order and at least some steps can occur in parallel.

A video content item is played for viewing. For example, a video content item may be played on a media player and the video content item may be displayed, for example, in a video player region. In some instances, a buffer may be utilized to allow some time for the processing of the video content item frame and the retrieval and display of the associated ads. The particular size of the buffer may vary depending on the resources of the computer performing the processing, and other factors such as the complexity of the video content item frame, and the rate at which the video frames are processed.

A selected, or current, frame of the video content item is analyzed for one or more region(s)-of-interest. The frame may be selected from a buffer or frame queue. Each frame in the video content item may be analyzed, or some sampling rate may be selected for the video content item to reduce the number of frames that are analyzed, such as, for example, every twenty-four frames. The particular sampling rate chosen may be a function of the available computing resources, for example. Further, the sampling rate may be dynamic and change depending upon how many frames are in the buffer, or the number of local features being located.
In some instances, a current video content item frame may be compared with a previously analyzed video content item frame to determine relative differences between before analyzing the current frame. Because video content items frames are often very similar to proceeding video content item frames, the identified local features in the two frames may be identical or near identical. Thus, processing resources may be saved by determining the relative similarities or differences between two frames using a relatively low computationally intensive comparison process before undertaking the high computationally intensive process of locating local features and matching them against stored images. If a frame is statistically similar enough to a previously analyzed frame it can be assigned the same local features as the previous frame, for example.

The identified one or more region(s)-of-interest are used to search a database of images. A region-of-interest may be decomposed to identify target local features, which are compared against the reference local features using object recognition techniques, for example.

Ads associated with any matching region-of-interest are retrieved and displayed along with the current video frame in video content item. In some cases, the ads are displayed in a window separate from the window displaying the video content item, such as in an ad region and video player region. Additionally or alternatively, the ads may be displayed on or near the associated regions-of-interest in the current frame of the video stream in an overlay, for example.
The figure above depicts an example user interface for providing ads associated with images in a video content item. The user interface includes media control window that may contain the various icons that are used to control the playback of a video content item. The user interface also includes a video content region where frames of a currently playing video content are displayed. In some examples, the region may also display ads associated with one or more images displayed in a current frame of the video content item. As illustrated, the ads are displayed in ad regions, each of which is separate from other regions so as to not interfere with viewing of the video content item.

In the example shown, a video content item is being played in the user interface. The current frame of the video content item is shown in a display region and shows a man standing next to a personal computer. The displayed frame in the video content item is analyzed for regions-of-interest. The regions-of-interest are decomposed to identify local features, which are used to query a database of reference local features corresponding to reference regions-of-interest associated with ads. Ads associated with matching regions-of-interest are displayed along with the current video content item frame.

In the example shown above, the regions-of-interest include a computer and a man. Various ads related to the computer image are shown in the ad regions. One ad region shows a banner ad, whereas another ad region includes hyperlink ads by which web pages of corresponding advertisers may be accessed. Similarly, the box displays an ad inside the current frame of the video content item. In the example of user interface, no ads were displayed related to the man sub-image displayed in video region.
The figure presented above shows an example environment for the presentation of advertisements associated with a digital photograph. In general, the environment allows a user to submit a digital photograph from a user device and in return receive advertisements related to the submitted photograph as well as other non-advertisement content such as search engine results, for example.

More particularly, the environment includes a user device adapted to take a digital photograph and submit it to a server via a network. The server is adapted to receive the digital photograph through the network, analyze the image to identify one or more stored matching representations of objects that have associated advertisements, and provide the associated advertisements, and other content, to the user device via the network.

The user device may be a mobile device (e.g., a phone) capable of taking digital photographs. However, the user device is not limited to mobile phones, and may be any device capable of taking digital pictures including, but not limited to, a personal digital assistant, a smart phone, a laptop computer, a digital camera, a portable media player, and a portable video game console, for example.

In the example shown, a user of the user device takes a picture of an object (here, a book) for which the user or operator of the user device would like to receive additional information. The object may include anything capable of being photographed including people, automobiles, buildings, products, advertisements, text, etc. For example, a user may take a photograph of an
automobile, an advertisement or a billboard featuring a movie, a restaurant or a hotel about which the user desires more information.

The digital photograph is transmitted by the user device to the server. The user device and the server are wirelessly connected through a network. The network may comprise a variety of networks including, but not limited to, a public network (e.g., the internet), a private network (e.g., corporate LAN), and cellular telephone network (e.g., CDMA, GSM, 2G, LTE, and 3G).

The server receives the image of the object and compares the image of the object to stored representations of objects using a variety of object recognition techniques. In the example shown, the server may compare the received image of the book with one or more stored representations of objects using various object recognition techniques. Because different object recognition systems or engines are often suitable for different object types, it may be desirable to process the received image with a variety of object recognition engines. For example, certain characteristics and assumptions about a human face may be utilized by a face recognition engine to improve performance. However, those assumptions may not apply to the recognition of rigid textured objects, such as a building, for example. Thus, the server may compare the received image with the stored representations of objects using a variety of object recognition engines. These engines may include: an optical character recognition engine; a rigid textured object recognition engine; a face recognition engine; and an articulate object recognition engine.

The server may further retrieve any advertisements associated with the matching representation of an object. In the example shown, an advertiser, such as a book store owner or a book publisher, may have bid to have an advertisement associated with the book object. The advertisement may be combined with search engine results or other non-advertisement content produced in response to receiving the image and returned to the user device, for example.

In this manner, a person may receive advertisements or information about objects by sending an image of an object to an information retrieval system.
The flowchart presented above is for an example process for the presentation of advertisements associated with a digital photograph. The steps of the process do not have to occur in a specific order and at least some steps can occur in parallel.

An image is received from a user device capable of taking digital photographs. The user device may be any device capable of taking digital pictures, such as a mobile phone, a digital camera, or a portable media device. In one example, a user of a mobile phone may have taken a digital image of a particular object about which more information is desired.

Additional image content information may be optionally received. For example, additional classification data may be received from the user device. This additional data may allow the object recognition engines that process the received image to narrow the number of objects that are searched or provide more accurate results. In some instances the additional data may be user supplied. The user may be prompted after taking the image to select a general category for the image or provide a description. For example, after taking a picture of a restaurant, the user may indicate that that the picture is of a restaurant. This additional data may allow the object recognition engines to narrow the objects that are searched to those objects associated with restaurants.

In some instances, the additional data may be automatically supplied by the user device. For example, where the user device is equipped with a global positioning system, the user device may provide the coordinates of the location where the image was taken. This location data may then be used by the object recognition engines to restrict their image search to images of objects that are associated with provided coordinates.

The received image is processed using various object recognition engines. As described above, matching objects may be located in the received image by comparing stored object representations with the received image. The object recognition engines may include, but are not limited to, an optical character recognition engine, a rigid textured object recognition engine, a face recognition engine, and an articulate object recognition engine.

Each engine may compare the received image of an object with one or more stored representations of objects. The stored representations of objects may comprise images, for example. Each object recognition engine may, as an output, indicate which of the stored representations of objects it matched with the image, along with a confidence value.
representation of an object that is found to match the received image with the highest confidence value is selected. In some examples, a minimum confidence value may be selected such that no representation of an object is selected as a match unless it exceeds the minimum confidence value. Where no representation of an object meets the minimum confidence value, an error may be sent to the submitting user device, or the user may be asked to provide another image, for example.

Advertisements associated with the recognized objects are returned to the user device along with any additional content. One or more of the stored representations of objects may have associated advertisements. The advertisements may have been provided by advertisers who bid on having an advertisement displayed when an image matching the particular representation of an object is received. The advertisements may be stored with each advertisement’s associated representation of an object, or may be stored separately. The advertisements may be provided to the user device along with any additional non-advertisement content related to the received image.

For example, an online merchant may bid to have an advertisement for a particular DVD displayed when an image matching the stored representation of that DVD is received. Later, a user may see the DVD at a store and take a picture of the DVD using a mobile phone in order to receive more information about the DVD. When the image matching the representation of the DVD is received, the associated advertisement is retrieved. The received image may have also been used as a query to a search engine to produce non-advertisement search engine results related to the DVD. The associated advertisement may be combined with the non-advertisement search engine results and sent to the user device.

Although the image retrieval concepts have been described with respect to receiving an analyzing a digital photograph, the techniques are also applicable to other devices and media, such as digitized hand-drawn sketches, graphic images, and one or more frames in a video.

The storage for images may include sub-images. The first image may be analyzed to identify a sub-image. Matching may include matching the identified sub-image of the first image with a second sub-image stored in the storage for images. Matching the identified sub-image of the first image may include using object recognition techniques to generate a likelihood that the stored sub-image includes the identified sub-image of the first image. Selecting an
advertisement may include selecting an advertisement to be presented based on a comparison between the likelihood and a threshold.

A sub-image may correspond to a region-of-interest of an image and may include one or more local features. The storage for images may include storage for regions-of-interest, local features and associations between local features and regions-of-interest. The first image may be analyzed to identify a region-of-interest. The region-of-interest may be analyzed to identify one or more local features included in the region-of-interest. Matching a first image may include matching the identified region-of-interest with a region-of-interest stored in the storage for regions-of-interest, where the matching is based on a comparison of local features included in the identified region of interest with one or more local features associated with at least one region-of-interest stored in the storage for regions-of-interest.

Matching the identified sub-image of the first image may include using object recognition techniques to generate a likelihood that the stored region-of-interest matches the identified region-of-interest. Selecting an advertisement may include selecting an advertisement to be presented based on a comparison between the likelihood and a threshold.

Matching the identified sub-image of the first image may include using object recognition techniques to generate a likelihood that the stored local features match the local features included in the identified region-of-interest. Selecting an advertisement may include selecting an advertisement to be presented based on a comparison between the likelihood and a threshold.

At least some of the stored advertisements may be associated with a bid and an association with a stored image. Selecting an advertisement may include selecting an advertisement to be presented based on both the bid associated with the advertisement and an association between the second image stored in storage for images with the advertisement.

At least some of the stored advertisements may be associated with a bid and an image stored in the storage for images. Selecting an advertisement may include selecting an advertisement to be presented based on both the bid associated with the advertisement and an association between the second image stored in storage for images with the advertisement.

At least some of the stored advertisements may be associated with a maximum bid and an image stored in the storage for images. Selecting an advertisement may include selecting an
advertisement to be presented based on both the maximum bid associated with the advertisement and an association between the second image stored in storage for images with the advertisement.

The first image may be associated with search results to be presented over a network of computers. Presentation of the advertisement may be enabled with the search results over the network of computers. The first image may be associated with document content to be presented over a network of computers. Presentation of the advertisement may be enabled with presentation of the document content over the network of computers.

Object recognition techniques may be used to generate a likelihood that the stored sub-image includes the identified sub-image of the first image. Selecting a sponsored-content item may include selecting a sponsored-content item to be presented based on a comparison between the likelihood and a threshold. At least some of the stored sponsored-content items may be associated with a bid and an association with a stored image. Selecting a sponsored-content item may include selecting a sponsored-content item to be presented based on both the bid associated with the sponsored-content item and an association between the second image stored in storage for images with the a sponsored-content item.

The techniques discussed herein may be implemented using digital electronic circuitry, integrated circuitry, specially designed ASICs (application specific integrated circuits), computer hardware, firmware, software, and/or combinations thereof. These various implementations can include implementation in one or more computer programs. To provide for interaction with a user, a computer may have a display device (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user and a keyboard and a pointing device (e.g., a mouse or a trackball) by which the user can provide input to the computer. Other kinds of devices can be used to provide for interaction with a user as well; for example, feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and input from the user can be received in any form, including acoustic, speech, or tactile input.

The computing system can include clients and servers. A client and server are generally remote from each other and typically interact through a communication network. Examples of communication networks include a local area network (LAN), a wide area network (WAN), and
the Internet. The relationship of client and server arises by virtue of computer programs running on the respective computers and having a client-server relationship to each other.

Although the techniques and concepts generally have been described using a sub-image of an image, the techniques and concepts are applicable to an image. Also, the decomposition of an image into sub-images may be based on various image features, including, for example, color, shape, texture, in lieu of or in addition to decomposing a region-of-interest into local features.