August 24, 2016

IMAGE ACQUISITION AND PROCESSING FOR FINANCIAL DUE DILIGENCE

Matthew Wood
Patrick Dunagan
John Clark
Kristina Bohl
David Gonzalez

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

Recommended Citation
Wood, Matthew; Dunagan, Patrick; Clark, John; Bohl, Kristina; and Gonzalez, David, "IMAGE ACQUISITION AND PROCESSING FOR FINANCIAL DUE DILIGENCE", Technical Disclosure Commons, (August 24, 2016) http://www.tdcommons.org/dpubs_series/243

This work is licensed under a Creative Commons Attribution 4.0 License. This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.
INTRODUCTION

It is often difficult for analysts to preemptively identify a risky or bad cross-border merger, acquisition, and investment transactions due to a lack of reliable, accessible information about the viability of target companies, particularly outside of the developed world. This lack of insight makes it challenging to avoid risk of bad deals or remedy a desired transaction prior to execution, and increases liability exposure among large enterprises.

SUMMARY

Satellite image acquisition is well known in the art. Many companies provide commercial satellite imagery. Existing imaging systems also allow the determination of polygons representing places on Earth from satellite and other imagery. Utilization of such imagery yields insights about physically observable assets which allow due diligence researchers to qualify targeted deals more accurately, and reduce risk. Site-specific information available as described by the present disclosure increases visibility into broader macroeconomic trends, and further informs key financial decisions in global markets.

DETAILED DESCRIPTION

Described are systems, methods, computer programs, and user interfaces for image location, acquisition, analysis, and data correlation. Results obtained via image analysis are correlated to non-spatial information. For example, images of regions of interest of the Earth are used for financial due diligence. Due diligence (DD) generally refers to the investigative process by which an organization mitigates risk prior to engaging in a business or contractual transaction. Specifically for those in the financial world, DD entails the process by which an investor thoroughly evaluates a target company and its assets prior to investment or acquisition.
Although many aspects of the due diligence process relate to the collection of financial and legal information, the systems and methods described herein can provide additional critical insights an investor or research analyst needs to qualify the physical assets and macroeconomic dynamics associated with a targeted deal.

Due diligence requires comprehensive information to inform financial decisions. Among increasingly globalized markets, and associated cross-border merger, acquisition, and investment transactions, the need for financial due diligence is important. The systems and methods described herein provide a global dataset of economically-relevant activity that can fill the gaps in existing sources of DD information and add value by enabling more informed decisions regarding financial transactions.

Although DD is formed from the integration of a broad variety of data sources that are not spatial in nature, the present disclosure can add value by contributing quantitative information and perspective derived from sources that are physically observable. Validating monthly production levels of a manufacturing facility in China (based on parking lot activity, smoke plumes, or the like) for a potential acquiring company is an example.

The geographical coordinates of features on Earth, for example a location at which a financial due diligence is to be performed, can be mapped to textual descriptions. From these mappings, a polygon of interest on the surface of the Earth is determined. The polygon of interest's dimensions and coordinates control an image acquisition system. This system finds relevant and timely images in an image database and/or controls devices to acquire new images of the area. With one or more images of the polygon of interest available, various image enhancement techniques can be performed. Image enhancements can be performed to increase human and/or machine perception and discrimination of items of interest from the background.
Enhanced images, can then be presented to human workers to perform the visual analysis. The resulting counts are processed by analytic and statistical processes. These processes incorporate the results from many different images, and/or many results from the same image counted by different workers. The processes may include filtering functions to improve the resulting data.

Results of the processing can be correlated with non-spatial data (for example, verifying levels of production at an overseas corporate acquisition target). Over time these correlations allow the results of this analysis to be used in predicting the non-spatial data. For example, utilization of imagery can identify existing or potential sources of activity data associated with financial due diligence.

In some embodiments of this system, feedback from the image acquisition, image analysis, and non-spatial correlation is used to improve the data collected. For example, feedback may be used to refine the dimensions of the polygons of interest, the quality of the imagery, and the accuracy of the image analysis.

FIG. 1 shows a block diagram of one example of an imaging system 100, according to one embodiment. Input control parameters 105 specify the operation of the system. These parameters include textual non-spatial descriptions of areas of interest on Earth. Examples of non-spatial descriptions include “Financial Due Diligence Site.” Other control parameters may include the type of data to be collected (e.g., cars, trucks, shipping containers, construction, ships, oil, dry bulk), time and date ranges for image collection, the frequency of derived data measurement, or requirements for confidence scores of derived data.

The location search subsystem 110 determines polygons of features of interest on the Earth. The geographical coordinates of features on Earth, for example a financial due diligence
site, are mapped to textual descriptions. The geographical coordinates may be obtained from geographical databases or prior imagery of the site, for example. The textual descriptions may, for example, be the Financial Due Diligence Site. From these mappings, a polygon of interest on the surface of the Earth is determined.

The location search subsystem 110 can also be configured to receive feedback 169 from the non-spatial correlation subsystem 140. This may be the case where the non-spatial correlation subsystem 140 determines that additional information needs to be obtained by the location search subsystem 110. For example, the non-spatial correlation subsystem 140 may determine that the correlation between the count at a given location and the financial due diligence data is inconsistent, suggesting a need for more or different data that can be obtained by location search subsystem 110. The feedback provided to the location search subsystem 110 may include an updated search location, thereby resulting in different locations being searched for use in obtaining results.

The polygons of interest can be passed 115 to the image acquisition subsystem 120. The image acquisition subsystem 120 determines the quality and appropriateness of the polygons based on real images. For example, the image acquisition subsystem 120 may determine that a polygon is enlarged, shifted or refined relative to the real images. This polygon discrepancy information may be provided as feedback 167 to the location search subsystem 110 to improve the quality and appropriateness of polygons determined by the location search subsystem 110.

The image acquisition subsystem 120 can also use the spatial information describing the polygons of interest and the other control parameters to acquire an image, or set of images, that satisfy the control parameters for each polygon of interest. In some cases, image data is accessed from an existing image archive 150. Additionally, if needed, these images are sourced from
image archives, including a social image archive. In other cases, image data is obtained from an image collection subsystem 160, such as a satellite or satellite network, array of security cameras, drones, or other purpose built image acquisition systems. Images may be acquired from either or both of the image archives 150 and image collection 160 depending on which images are the most economical and appropriate for the task.

In some cases, feedback information about the quality and alignment of the imagery is passed back 166 to the image acquisition subsystem 120. Based on this feedback, the image acquisition subsystem 120 can acquire more imagery. The image acquisition subsystem 110 is also configured to receive feedback 168 from the non-spatial correlation subsystem 140. The feedback may be used to alter the acquisition of images. For example the feedback may be used to change the frequency or time of day of image acquisition.

The acquired images can be sent 125 to the image analysis subsystem 130. The image analysis subsystem 130 evaluates the images, enhances and prepares the images, presents the images to the human workers with a task specific user interface, statistically processes the results, and passes those results 135 to the non-spatial correlation subsystem 140.

The image analysis subsystem 130 can include a number of methods for improving accuracy and throughput in image analysis. The capabilities of the image analysis subsystem 130 are described with respect to the example of financial due diligence. However, the principles discussed are general and can be applied to many different image analysis tasks. Image enhancement and analysis can be performed with automated systems and/or human-in-the-loop systems. In some cases, the image analysis subsystem 130 receives feedback information 165 about the accuracy and adequacy of its results from the non-spatial correlation
subsystem 140. In these cases, the data is modified, or the image analysis is re-performed according to the feedback information.

The non-spatial correlation subsystem 140 can receive result data 135 from the image analysis subsystem 130, and calculate temporal correlation between that data and financial due diligence data of interest. The data can add value to financial due diligence because such data is physically observable, and can relate to remote and/or inaccessible locations. In addition, data freshness or rate of change can be important to such analysis.

The non-spatial correlation subsystem 140 can collect correlation data over time. The collected data is used to create a prediction of future metrics based on previously collected correlations between image analysis data and financial due diligence data.
Figures

FIGURE 1
Abstract

Described are systems, methods, computer programs, and user interfaces for image location, acquisition, analysis, and data correlation. Results obtained via image analysis are correlated to non-spatial information. For example, images of regions of interest of the Earth are used for financial due diligence. Due diligence (DD) generally refers to the investigative process by which an organization mitigates risk prior to engaging in a business or contractual transaction. Specifically for those in the financial world, DD entails the process by which an investor thoroughly evaluates a target company and its assets prior to investment or acquisition. Although many aspects of the due diligence process relate to the collection of financial and legal information, the systems and methods described herein can provide additional critical insights an investor or research analyst needs to qualify the physical assets and macroeconomic dynamics associated with a targeted deal.

Keywords associated with the present disclosure include: image acquisition, satellite imagery drone imagery, financial due diligence, due diligence.