Introduction

Underwriters of commercial insurance lines evaluate risk, select the right policies, and price them competitively to form a profitable business. Underwriters rely on incomplete information submitted by policyholders, a limited number of on-site visits, and domain expertise to form an opinion on a policy’s risk. Risk hidden in traditional information sources can often be the difference between profitable and net-loss underwriting operations.

Summary

Satellite image acquisition is well known in the art. Many companies provide commercial satellite imagery. Existing imaging systems also allow the determination of polygons representing places on Earth from satellite and other imagery. Utilization of such imagery allows for determination of activity data (vehicles, containers, equipment, etc.) associated with sites in a policy to fill information gaps for underwriters to expose risks that were otherwise hidden. Underwriters can use such information to avoid high risk policies and compete to win low risk business. Additionally, following a claim, firms can validate a loss and even review historical imagery to determine why the loss occurred.

Detailed Description

Described are systems, methods, computer programs, and user interfaces for image location, acquisition, analysis, and data correlation. Results obtained via image analysis are correlated to non-spatial information. For example, images of regions of interest of the Earth are used for insurance risk assessments, which can allow for a reduction in claims by avoiding risky policies, competitively priced policies, and early identification of risk. Underwriters can analyze patterns of real world activity to uncover signals of high or low risk at a property before writing a
policy. Improvements to understanding of risk can improve overall loss ratios (paid claims / written premiums), which directly impact profitability of underwriting operations.

The geographical coordinates of features on Earth, for example a location at which an insurance risk assessment is to be performed, can be mapped to textual descriptions. From these mappings, a polygon of interest on the surface of the Earth is determined. The polygon of interest's dimensions and coordinates control an image acquisition system. This system finds relevant and timely images in an image database and/or controls devices to acquire new images of the area. With one or more images of the polygon of interest available, various image enhancement techniques can be performed. Image enhancements can be performed to increase human and/or machine perception and discrimination of items of interest from the background.

Enhanced images, can then be presented to human workers to perform the visual analysis. The resulting counts are processed by analytic and statistical processes. These processes incorporate the results from many different images, and/or many results from the same image counted by different workers. The processes may include filtering functions to improve the resulting data.

Results of the processing can be correlated with non-spatial data, for example supplier output data. Over time these correlations allow the results of this analysis to be used in predicting the non-spatial data. For example, utilization of imagery can identify existing or potential sources of activity data associated with risk.

In some embodiments of this system, feedback from the image acquisition, image analysis, and non-spatial correlation is used to improve the data collected. For example, feedback may be used to refine the dimensions of the polygons of interest, the quality of the imagery, and the accuracy of the image analysis.
FIG. 1 shows a block diagram of one example of an imaging system 100, according to one embodiment. Input control parameters 105 specify the operation of the system. These parameters include textual non-spatial descriptions of areas of interest on Earth. Examples of non-spatial descriptions include “Insured Site.” Other control parameters may include the type of data to be collected (e.g., cars, trucks, shipping containers, construction, ships, oil, dry bulk), time and date ranges for image collection, the frequency of derived data measurement, or requirements for confidence scores of derived data.

The location search subsystem 110 determines polygons of features of interest on the Earth. The geographical coordinates of features on Earth, for example an insured site, are mapped to textual descriptions. The geographical coordinates may be obtained from geographical databases or prior imagery of the site, for example. The textual descriptions may, for example, be the Insured Site. From these mappings, a polygon of interest on the surface of the Earth is determined.

The location search subsystem 110 can also be configured to receive feedback 169 from the non-spatial correlation subsystem 140. This may be the case where the non-spatial correlation subsystem 140 determines that additional information needs to be obtained by the location search subsystem 110. For example, the non-spatial correlation subsystem 140 may determine that the correlation between the count at a given location and the relevant insurance risk data is inconsistent, suggesting a need for more or different data that can be obtained by location search subsystem 110. The feedback provided to the location search subsystem 110 may include an updated search location, thereby resulting in different locations being searched for use in obtaining results.
The polygons of interest can be passed 115 to the image acquisition subsystem 120. The image acquisition subsystem 120 determines the quality and appropriateness of the polygons based on real images. For example, the image acquisition subsystem 120 may determine that a polygon is enlarged, shifted or refined relative to the real images. This polygon discrepancy information may be provided as feedback 167 to the location search subsystem 110 to improve the quality and appropriateness of polygons determined by the location search subsystem 110.

The image acquisition subsystem 120 can also use the spatial information describing the polygons of interest and the other control parameters to acquire an image, or set of images, that satisfy the control parameters for each polygon of interest. In some cases, image data is accessed from an existing image archive 150. Additionally, if needed, these images are sourced from image archives, including a social image archive. In other cases, image data is obtained from an image collection subsystem 160, such as a satellite or satellite network, array of security cameras, drones, or other purpose built image acquisition systems. Images may be acquired from either or both of the image archives 150 and image collection 160 depending on which images are the most economical and appropriate for the task.

In some cases, feedback information about the quality and alignment of the imagery is passed back 166 to the image acquisition subsystem 120. Based on this feedback, the image acquisition subsystem 120 can acquire more imagery. The image acquisition subsystem 110 is also configured to receive feedback 168 from the non-spatial correlation subsystem 140. The feedback may be used to alter the acquisition of images. For example the feedback may be used to change the frequency or time of day of image acquisition.

The acquired images can be sent 125 to the image analysis subsystem 130. The image analysis subsystem 130 evaluates the images, enhances and prepares the images, presents the
images to the human workers with a task specific user interface, statistically processes the 
results, and passes those results to the non-spatial correlation subsystem.

The image analysis subsystem can include a number of methods for improving 
accuracy and throughput in image analysis. The capabilities of the image analysis subsystem 
are described with respect to the example of insurance risk assessment. However, the 
principles discussed are general and can be applied to many different image analysis tasks. 
Image enhancement and analysis can be performed with automated systems and/or human-in-
the-loop systems. In some cases, the image analysis subsystem receives feedback 
information about the accuracy and adequacy of its results from the non-spatial correlation 
subsystem. In these cases, the data is modified, or the image analysis is re-performed 
according to the feedback information.

The non-spatial correlation subsystem can receive result data from the image 
analysis subsystem, and calculate temporal correlation between that data and insurance risk 
assessment data of interest. The data can add value to insurance analysis because such data is 
physically observable, and can relate to remote and/or inaccessible locations. In addition, data 
freshness or rate of change can be important to such analysis.

The non-spatial correlation subsystem can collect correlation data over time. The 
collected data is used to create a prediction of future metrics based on previously collected 
correlations between image analysis data and insurance risk assessment data.

Underwriters of commercial insurance lines are responsible for evaluating risk, selecting 
the right policies, and pricing them competitively to form a profitable business. Underwriters 
rely on information submitted by policyholders, a limited number of on-site visits, and domain 
expertise to form an opinion on a policy’s risk. Imagery as described herein describing real
world activity at and around the sites covered in a policy can fill gaps in an underwriter’s view of
the policy and can exposes risks that were otherwise hidden before writing or renewing the
policy. When a policyholder makes a claim, the data described herein can allow the firm to
validate that a loss occurred and even understand the preceding site activity that lead to a loss.

Commercial insurance lines are often heavily focused on coverage of physical properties
and liabilities at sites. Risk at sites can be directly influenced by the movement of big real world
objects (trucks, containers, ships, commodities, etc.) at and around such sites, but underwriters
often have little visibility into that activity. The described data provides underwriters an
objective, globally consistent source of data describing real world activity at/around new sites
and even at/around sites within a firm’s global book of business.
Figures

![Diagram of Image Acquisition and Processing for Insurance Risk Assessments]

FIGURE 1
Abstract

Described are systems, methods, computer programs, and user interfaces for image location, acquisition, analysis, and data correlation. Results obtained via image analysis are correlated to non-spatial information. For example, images of regions of interest of the Earth are used for insurance risk assessments, which can allow for a reduction in claims by avoiding risky policies, competitively priced policies, and early identification of risk. Underwriters can analyze patterns of real world activity to uncover signals of high or low risk at a property before writing a policy. Improvements to understanding of risk can improve overall loss ratios (paid claims / written premiums), which directly impact profitability of underwriting operations.

Keywords associated with the present disclosure include: image acquisition, satellite imagery drone imagery, insurance risk assessment, insurance, underwriting.