METHOD OF SELECTING CONTENT FOR DISPLAYING IN AN IDLE SYSTEM

ABSTRACT

An application to automatically select display content based on user interest in an idle system is disclosed. The content such as images, maps, videos, etc. may be based on social network postings, business domain, travel interests or subjects of study that are connected or related or produced by a user of the system. The application displays the content by determining use context of the content. The display may be customized based on application such as personal home use, a classroom or educational setting or a meeting or conference, such as a business video conference.

BACKGROUND

It is common for a system to display content such as beautiful images to users or participants when a system goes idle, for example, when no meeting is scheduled or in the interval between meetings. The system may be any communication system such as a video conferencing system. However the content displayed will have no connection or relevance to the participants’ interest or have relation to the agenda of the meeting. Selecting content relating to the participants is something current systems cannot do. This disclosure provides a solution for selecting content for display based on interests of the participants in the room.

DESCRIPTION

An application is created to automatically select display content based on user interest in an idle system. The content such as images, maps, videos, etc. may be based on social network
postings, business domain, travel interests or subjects of study that are connected or related or produced by a user of the system.

In one instance, the application displays the content by determining use context of the content. The display may be customized based on application such as personal home use, a classroom or educational setting or a meeting or conference, such as a business video conference. In some cases, where individual identities can be determined such as personal, business etc., using the detected identities the application displays content using a new ranking scorer that relaxes some existing selection criteria (i.e. popularity) on the content belonging to the viewers or their close social network.

For example, if the users have publicly expressed interest on a topic or subject in any social network, the application ranks the content based on topic of interest. For example, if a participant in a meeting expressed his interest on antique cars in a social network, then the application ranks public content relating to antique cars higher for display. A typical example is shown in FIG. 1 where selection of content based on meeting context and content extraction is depicted.

In some instances, the detected recent or upcoming trips may be ranked higher and the public content relevant to those destinations displayed. Optionally, the application may determine the industry or domain of the company and rank this aspect higher for display of public content relevant to that domain. Alternatively, in an education setting, topics relevant to the syllabus or to current or upcoming lessons for study in the classroom are extracted using the application and ranked higher, and the public content relevant to those areas of study displayed.
The application connects disparate sources and uses multiple signals from those sources for automatic selection of content that will be interesting to or relate to the viewer of the content in some aspect. The application for providing automatic selection for displaying content can be implemented with any existing communication system such as a video conferencing system.

The application saves time by automatically providing needed information, may promote interaction amongst the participants by displaying relevant content and provides an easy way to select and update content based on user interest.

In situations in which the systems discussed here may collect personal information about users, or may make use of personal information, explicit authorization and consent is first obtained from the users before such collection and use. Additionally, users are provided with an opportunity to control whether programs or features collect user information (e.g., facial recognition information, information about a user’s social network, user characteristics such as
age, gender, profession, etc., social actions or activities, user preferences, content created or submitted by a user, or a user’s current location). In addition, certain data are treated in one or more ways before it is stored or used, so that personally identifiable information is removed. For example, a user’s identity may be treated so that no personally identifiable information can be determined for the user, or a user’s geographic location may be generalized where location information is obtained (such as to a city, ZIP code, or state level), so that a particular location of a user cannot be determined. Thus, a user has control over how information is collected about the user and used by a server.