
Technical Disclosure Commons Technical Disclosure Commons 

Defensive Publications Series 

August 2020 

Cardinality Estimation Using A Bloom Filter Cardinality Estimation Using A Bloom Filter 

Anonymous 

Follow this and additional works at: https://www.tdcommons.org/dpubs_series 

Recommended Citation Recommended Citation 
Anonymous, "Cardinality Estimation Using A Bloom Filter", Technical Disclosure Commons, (August 05, 
2020) 
https://www.tdcommons.org/dpubs_series/3500 

This work is licensed under a Creative Commons Attribution 4.0 License. 
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for 
inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons. 

https://www.tdcommons.org/
https://www.tdcommons.org/dpubs_series
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/3500?utm_source=www.tdcommons.org%2Fdpubs_series%2F3500&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US


Cardinality Estimation Using A Bloom Filter 

ABSTRACT 

In certain applications, e.g., online advertising where user data may be utilized, it is a 

requirement to estimate the cardinality of data values. This disclosure presents a lightweight 

mechanism to determine data cardinality. A Bloom filter is updated for each key by setting bits 

that are identified based on hashing the key. To determine whether there are multiple keys in a 

set, the count of bits in the Bloom filter that are set is obtained and is compared with a threshold 

value. If the threshold value is met, it is determined that the data set has at least the 

corresponding cardinality, e.g., at least two keys, at least three keys, etc. 

KEYWORDS 

● Cardinality estimation 

● Key collision 

● Bloom filter 

● Probabilistic data structure 

● Online advertising 

● User-identifiable information (UII) 

BACKGROUND 

In many situations, there are restrictions on how data is stored and/or utilized. For 

example, user-identifiable information (UII) can only be accessed and utilized with specific user 

permission and in compliance with privacy standards and rules. 

In online advertising, advertisers that deliver ads via an advertising network can send 

parameters, e.g., name-value pairs, as part of an advertising event. It is possible to track such 

parameters in terms of the users that are associated with the event. Certain parameters may be 

2

: Cardinality Estimation Using A Bloom Filter

Published by Technical Disclosure Commons, 2020



user-specific (e.g., include UII) and need to be filtered, while other parameters that are associated 

with multiple users are not user-specific (include no UII) and therefore, can be utilized directly. 

Filtering UII allows the advertising network to avoid storing UII. However, to enable such 

filtering, it is necessary that UII be identified. 

DESCRIPTION 

When there is a requirement to track different keys (e.g., that may or may not include 

UII) that are utilized in a particular context, an important goal is to if there is more than one 

unique key. To serve this requirement in a lightweight manner, it is important that the solution to 

detect uniqueness of keys use as little memory as possible. Further, when the keys include 

restricted data (e.g., UII), it is important that the original keys not be recoverable from any data 

structures utilized to track keys. 

A Bloom filter is a probabilistic data structure that enables a quick and memory efficient 

lookup of whether an element is present in a set. A lookup of the Bloom filter is probabilistic in 

that it can confirm that an element either definitely is not in the set or is likely to be in the set. To 

provide a lightweight, non-reversible data structure that enables determination of the existence of 

more than one unique key, this disclosure utilizes a Bloom filter.  

3

Defensive Publications Series, Art. 3500 [2020]

https://www.tdcommons.org/dpubs_series/3500



 

1. Initial value of Bloom filter: all 56 bits are zero 
[00000000000000000000000000000000000000000000000000000000] 

 
2. Bloom filter after insertion of a first key (key = {3136136361}) - 16 bits are set based on 
hashing the key 

[00011110011001101100110110110000000000000000000000000000] 
 
3. Bloom filter after insertion of a second key (key = {25666151}) - 5 additional bits are set 
based on hashing the key (some bits may be in common with those set for the first key 

[00011110011001101100110110110000000000000000000000011111] 
 

Fig. 1: Bloom filter updates 

Fig. 1 shows an illustrative example of a Bloom filter that is updated for each key that is 

utilized. Initially, all bits of the Bloom filter are zero. Update of the Bloom filter involves setting 

a subset of bits per key, identified by hashing the key. For example, a 56-bit Bloom filter can be 

utilized, with 16 bits used per key such that hashing the key identifies 16 bits of the Bloom filter 

that are then set . Per the property of the Bloom filter, bits that correspond to different keys are 

different with a very high probability; in other words, the likelihood of two different keys 

corresponding to the same set of bits (collision) is very low. 

Thus, insertion of two or more keys results in 17 or more bits being set when two 

different keys are inserted. Further, an additional 8 bits can be utilized as an instance counter. 

The instance counter is usable to determine whether a sample of sufficient size has been 

generated. The Bloom filter and the instance counter are combined in a 64-bit value which 

provides a standard and efficient word size usable in modern computers. 

4

: Cardinality Estimation Using A Bloom Filter

Published by Technical Disclosure Commons, 2020



 

Fig. 2: Simulation result – number of bits set vs. keys inserted 

To test whether multiple unique keys have been inserted, the number of bits of the Bloom 

filter that have been set are counted. If the bit count meets or exceeds a threshold, it can be 

concluded that there are multiple keys. Fig. 2 shows the results of a simulation with millions of 

iterations performed with insertion of one, two, and three keys (shown in different colors). As 

can be seen in Fig. 2, when 17 or more bits in the Bloom filter are set, it is an indicator that two 

or more unique keys have been inserted. With 25 or more bits set, there’s about a two-thirds 

likelihood that three keys have been inserted. Thus, when 16 bits per key are utilized to update 

the Bloom filter, the value of the threshold (denoted as B) can be selected as 17 to confirm 

whether at least two keys have been used. 

B can be adjusted based on the required precision and recall. Selection of a threshold B 

involves a tradeoff between precision and recall. Tests using between 1-10 keys show that 

precision increases with higher thresholds while recall decreases. For example, in testing with 

between 1-10 keys, the 17-bit test has a false negative rate of one in a million.  

5

Defensive Publications Series, Art. 3500 [2020]

https://www.tdcommons.org/dpubs_series/3500



Therefore, if 17 or more bits of the Bloom filter are set, it can be determined with a high 

degree of confidence that two keys have been utilized. Confirming that at least two keys have 

been utilized is sufficient to determine that the information is not user-identifiable.. An 

appropriate value of the threshold can be chosen by experimenting with different values and 

selecting the one that provides a suitable precision/recall tradeoff. In the use of Bloom filter to 

ensure uniqueness of keys, recall failures may be tolerable, since a false indication that a key is 

UII results in a failure mode that preserves the privacy of user information. 

 

Fig. 3: precision-recall tradeoff curve 

In a noisy system, the target can be set at three unique keys, rather than two unique keys. 

Fig. 3 shows an example of a precision/recall tradeoff curve for 3 keys. Different points on the 

curve in Fig. 3 are labeled with corresponding values of a threshold B that can be utilized to 

confirm whether at least 3 keys have been utilized. As seen in Fig. 3, When 32 bits of the Bloom 

filter are set, it is a near certain indication that three 3 keys have been inserted into the Bloom 

filter. While there is a low probability that insertion of two keys results in 32 bits of the Bloom 

6

: Cardinality Estimation Using A Bloom Filter

Published by Technical Disclosure Commons, 2020



filter being set (in the extremely rare case of when hashing of two keys result in disjoint sets of 

16 bits each), a value of B=33 can guarantee that there are at least 3 keys inserted. 

Alternatively, the bit count can be used in conjunction with other criteria, rather than use 

a fixed value of B. Further, a four-key (or higher) threshold can also be used. However, the 

precision-recall tradeoff in such cases is more severe and gets worse for higher key thresholds. 

CONCLUSION 

In certain applications, e.g., online advertising where user data may be utilized, it is a 

requirement to estimate the cardinality of data values. This disclosure presents a lightweight 

mechanism to determine data cardinality. A Bloom filter is updated for each key by setting bits 

that are identified based on hashing the key. To determine whether there are multiple keys in a 

set, the count of bits in the Bloom filter that are set is obtained and is compared with a threshold 

value. If the threshold value is met, it is determined that the data set has at least the 

corresponding cardinality, e.g., at least two keys, at least three keys, etc. 

REFERENCES 

1. Bloom filter 

2. Precision and recall 

7

Defensive Publications Series, Art. 3500 [2020]

https://www.tdcommons.org/dpubs_series/3500


	Cardinality Estimation Using A Bloom Filter
	Recommended Citation

	Cardinality Estimation Using A Bloom Filter

