ENHANCED MICROPHONE SECURITY WITH COLOR SENSOR

HP INC

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation
INC, HP, "ENHANCED MICROPHONE SECURITY WITH COLOR SENSOR", Technical Disclosure Commons, (April 06, 2020)
https://www.tdcommons.org/dpubs_series/3100

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.
Enhanced Microphone Security with Color Sensor

Abstract:
A recent study has proven voice commands can be transmitted using a laser targeted at a voice assistant device’s microphone.

This disclosure provides a solution to detect any laser presence targeted at notebook’s microphone and the ability to disable the microphone to prevent unwanted voice commands.

Disclosure:
This disclosure is to introduce designing a notebook with color sensor in close placement of the microphones to detect any spike levels before authenticating the voice commands. This will provide enhanced security against laser-based voice commands to initiate unintended commands with voice assistants and unintended wake up system with Wake-on-voice enabled.

Lasers can come in two forms: invisible and visible. Invisible lasers typically have a wavelength of ~980 nm and the majority of visible lasers emit wavelengths of ~638nm (red) and ~450nm (blue). A color sensor with IR detection can detect if there is a spike level in these particular wavelengths to identify if a voice command is coming from an intruder.
Diagram:

Disclosed by Nick Thamma and Simon Wong, HP Inc.