Smart Notifications, Assistance, and Cues Using Audio Smart Glasses

Anonymous

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation
Anonymous, "Smart Notifications, Assistance, and Cues Using Audio Smart Glasses", Technical Disclosure Commons, (February 28, 2020)
https://www.tdcommons.org/dpubs_series/2979

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.
Smart Notifications, Assistance, and Cues Using Audio Smart Glasses

ABSTRACT

This disclosure describes computer-vision enabled smart glasses that provide timely and context-sensitive notifications and cues via an audio interface. Examples of audio notifications, assistance, and cues include styling help and feedback, safety alerts, navigation assistance, health-tracking and health-related statistics, assistance in social situations, etc.

KEYWORDS

- Smart glass
- Audio glasses
- Audio smart glasses
- Personalized audio experience
- Audio UI
- Augmented reality

BACKGROUND

Smart glasses or head-mounted displays (HMDs) today generally rely on displays, e.g., virtual displays, to convey information to a user that wears the device. Such virtual displays can, on occasion, interfere with the processing of the real world by the user.

DESCRIPTION

This disclosure describes computer-vision enabled smart glasses that provide timely and context-sensitive notifications, assistance, and cues to a user via an audio interface.
As illustrated in Fig. 1, audio smart glasses can have an external appearance substantially similar to ordinary glasses. The audio smart glasses as described herein include various onboard components such as cameras, computer-vision units, microphones, speakers (e.g., bone conduction speakers), stereo audio, global and local positioning systems, wireless audio such as Bluetooth, motion capture and tracking units, a processor configured with machine learning models, voice-recognition units, proximity sensors, inertial measurement units, internet connectivity units, etc.

Speakers of the audio smart glasses are positioned such that audio messages are played in close proximity to the glasses, audible exclusively to the user. The use of audio smart glasses is illustrated by the following examples.
Fashion or style assistance

As illustrated in Fig. 2, per the techniques of this disclosure, audio smart glasses can provide fashion or style assistance in a real-time manner. In the example of Fig. 2, the onboard computer vision units detect that the user is grooming herself, and answers fashion-related queries by, for example, referring to techniques that can classify images by fashion or style.

Navigation and safety

![Fig. 3: Navigation and safety](image)
As illustrated in Fig. 3, per the techniques of this disclosure, audio smart glasses can provide navigation or safety assistance. The onboard computer vision units automatically detect hazards on the user’s path and alert the user. The onboard GPS and mapping units provide navigation assistance to the user.

Guidance during a workout

As illustrated in Fig. 4, per the techniques of this disclosure, audio smart glasses can provide guidance during a workout, e.g., on a treadmill or other equipment, or during other exercise. Onboard sensors track the amount of time spent, distance run, calories expended, or other workout-related measures, and guide the user based on the user’s profile. The smart glasses can also maintain health statistics of the user.

Fig. 4: Guidance during a workout
As illustrated in Fig. 5, per the techniques of this disclosure, audio smart glasses can provide spoken reminders to the users through the course of a day. Reminders can be based upon information in the user’s calendar, social media presence, etc., obtained with user permission.

Context in social situations
As illustrated in Fig. 6, per the techniques of this disclosure, audio smart glasses can provide the user with context and assistance in social situations. The onboard computer vision units detect and recognize faces in the user’s field of vision and determine from online sources available information pertaining to the recognized people that is likely of relevance to the user. Such information is provided to the user via an audio interface, enabling the user to engage in interaction with others in their vicinity whom they may not recognize readily.

CONCLUSION

This disclosure describes computer-vision enabled smart glasses that provide timely and context-sensitive notifications and cues via an audio interface. Examples of audio notifications, assistance, and cues include styling help and feedback, safety alerts, navigation assistance, health-tracking and health-related statistics, assistance in social situations, etc.