REDUCTION OF CLOCK FREQUENCY TO INCREASE THE SERVICE LIFE OF THE POWER MODULE

Verena Blunder
Bertrandt Ingenieurbüro GmbH

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation
Blunder, Verena, "REDUCTION OF CLOCK FREQUENCY TO INCREASE THE SERVICE LIFE OF THE POWER MODULE", Technical Disclosure Commons, (September 26, 2019)
https://www.tdcommons.org/dpubs_series/2522

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.
REDUCTION OF CLOCK FREQUENCY TO INCREASE THE SERVICE LIFE OF THE POWER MODULE

Technical task:
When operating an electric or hybrid vehicle, the AC current in the inverter is generated from DC current via the power module at battery voltage (DC voltage). When the power semiconductors are switched, thermomechanical voltages are generated by losses, which over time lead to the end of the service life of the components.

Initial situation:
The service life of the power semiconductors may not meet the requirements under certain applications. For this reason, the component may fail earlier than required.

Solution:
The clock frequency, which is switched via the power semiconductors, is reduced.

The motor current consists of the fundamental oscillation, which generates the actual rotating field, as well as higher frequency components, which are generated by the clock frequency and the switched voltage pulses. Lowering the clock frequency, for example from 3KHz to 1KHz, reduces the number of semiconductor circuits, which leads to less frequent switching losses. In this example an improvement of the lifetime consumption by approx. factor 1.5 - 2 is possible.

Advantages:
Current investigations show that by lowering the clock frequency, the lifetime consumption of the power semiconductors can be reduced.