September 16, 2019

BATTERY CELL SELF-DISCHARGE RATE GROUPING TO ENCHANCE BATTERY LIFE (BSGTEBL)

HP INC

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation
HP, INC, "BATTERY CELL SELF-DISCHARGE RATE GROUPING TO ENCHANCE BATTERY LIFE (BSGTEBL)", Technical Disclosure Commons, (September 16, 2019)
https://www.tdcommons.org/dpubs_series/2484

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.
Battery Cell Self-Discharge Rate Grouping to Enhance Battery Life (BSGTEBL)

Abstract

• When battery is stored for a period (e.g. stored NB for a period), voltage of each cell in battery pack will result deviation. Higher the deviation (Delta V = voltage difference) higher inconsistency of voltage among each cell will be realized and finally leading to shorter battery life. This phenomenon is called “CIM (Cell imbalance)”.

• In order to decrease DeltaV (voltage difference), battery cells will be divided into several groups, then the consistency of each defined group with similar self-discharge rate.

• The general parameters used to group cells are open-circuit voltage (OCV), capacity, impedance. Self-discharge rate can be used as a grouping parameter to decrease battery cells DeltaV (voltage difference).
Self-Discharge Rate Measurement

- Self-discharge rate measure process
 1. High Temperature Aging
 2. Room Temperature Aging
 3. 1st voltage check
 Voltage record as: V_1
 4. Room Temperature Aging
 5. 1st voltage check
 Voltage record as: V_2

- Self-discharge rate calculation
 $V_1 - V_2$
 Time 3

- Self-Discharge rate measurement process is show as left picture.
- Self-discharge rate is calculated with right formula.
- Self-discharge rate unit is: mv/hour
- Self-discharge rate is used to measure battery cell self-discharge
 - For example: 0.03mv/hour means battery cell voltage decrease 0.03mv per hour.
- If cells Self-discharge rate are same, battery cell voltage should be similar after storage.
Self-discharge rate grouping to mitigate CIM (cell imbalance)

As shown in below picture:
- Bigger self-discharge rate takes bigger DeltaV
- Lower self-discharge rate takes lower DeltaV
- Self-discharge rate grouping can help to decrease DeltaV, e.g.:
 - K-value < 0.03 as a group
 - K-value > 0.03 as a group

DeltaV: voltage difference

Below table is general battery cell grouping parameter without Self-discharge.

<table>
<thead>
<tr>
<th></th>
<th>OCV</th>
<th>IR</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group1</td>
<td>XX v+5mv</td>
<td>XX mΩ+5mΩ</td>
<td>XXmah+1%</td>
</tr>
<tr>
<td>Group2</td>
<td>XX v</td>
<td>XX mΩ</td>
<td>XX</td>
</tr>
<tr>
<td>Group3</td>
<td>XX v-5mv</td>
<td>XX mΩ-5mΩ</td>
<td>XXmah-1%</td>
</tr>
</tbody>
</table>

Below table is battery cell grouping parameter with Self-discharge.

<table>
<thead>
<tr>
<th></th>
<th>OCV</th>
<th>IR</th>
<th>Capacity</th>
<th>self-discharge rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group1</td>
<td>XX v+5mv</td>
<td>XX mΩ+5mΩ</td>
<td>XXmah+1%</td>
<td>XX mv/hour + XX</td>
</tr>
<tr>
<td>Group2</td>
<td>XX v</td>
<td>XX mΩ</td>
<td>XX</td>
<td>XX mv/hour</td>
</tr>
<tr>
<td>Group3</td>
<td>XX v-5mv</td>
<td>XX mΩ-5mΩ</td>
<td>XX mah-1%</td>
<td>XX mv/hour-XX</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>---------------</td>
</tr>
</tbody>
</table>

Advantage

- Enhance battery life by mitigating battery pack CIM.
- Saving cost on replacing battery by user to gain better user experience

Disclosed by Xiao Kai Mao, Jen-Hao Tai, Chien Kun Wang and Chang-Tai Lin, HP Inc.