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DETECTING GESTURES UTILIZING  
MOTION SENSOR DATA AND MACHINE LEARNING  

 

ABSTRACT 

 A computing device is described that uses motion data from motion sensors to detect 

gestures or user inputs, such as out-of-screen user inputs for mobile devices.  In other words, the 

computing device detects gestures or user touch inputs at locations of the device that do not 

include a touch screen, such as anywhere on the surface of the housing or the case of the device.  

The techniques described enable a computing device to utilize a standard, existing motion sensor 

(e.g., an inertial measurement unit (IMU), accelerometer, gyroscope, etc.) to detect the user input 

and determine attributes of the user input.  Motion data generated by the motion sensor (also 

referred to as a movement sensor) is processed by an artificial neural network to infer attributes 

of the user input.  In other words, the computing device applies a machine-learned model to the 

motion data (also referred to as sensor data or motion sensor data) to classify or label the various 

attributes, characteristics, or qualities of the input.  In this way, the computing device utilizes 

machine learning and motion data to classify attributes of the user input or gesture utilizing 

motion sensors without the need for additional hardware, such as touch-sensitive devices and 

sensors.  

 

DESCRIPTION 

Techniques are described that enable a computing device to detect gestures performed on 

a surface of a computing device that is not touch-sensitive, such as the back of the computing 

device, using data from one or more motion sensors.  Motion sensors of the computing device 

may detect changes in the acceleration of the device caused by the user sliding his or her finger 

over a surface of the device.  For example, the user input may cause the computing device to 

vibrate and the vibrations may be detected by the motion sensors.  The computing device may 
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differentiate between gesture directions (e.g., up, down, left, right) and location of the gesture 

based on changes in the motion data generated by one or more motion sensors (e.g., an 

accelerometer and/or a gyroscope) as the gesture is being performed.  

 

FIG. 1 

In the example of FIG. 1, a computing device is configured to detect user inputs on the 

front, back, and/or sides of the computing device based at least in part on data generated by one 

or more motion sensors.  Examples of computing devices include, but are not limited to, 

smartphones, tablets, watches, fitness trackers (e.g., wrist-worn, ankle-worn, waist-worn, or 

other devices worn by users that track various movement or other athletic activity), counter top 
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computing devices, laptops, or any other computing device.  The computing device includes a 

touch-sensitive device (e.g., a touchscreen) on the front, one or more processors, and one or more 

motion sensors.  Examples of processors include, but are not limited to, digital signal processors 

(DSPs), general purpose microprocessors, application specific integrated circuits (ASICs), field 

programmable logic arrays (FPGAs), or other equivalent integrated or discrete logic circuitry.  

Examples of motion sensors include an accelerometer, a gyroscope, an inertial measurement unit 

(IMU), a magnetometer, among others.   

In some examples, the front of the computing device may include a touch-sensitive 

device while the back of computing device does not include a touch-sensitive device.  Examples 

of touch-sensitive devices include touchscreens and touchpads, among others. 

 The surfaces of the housing of the computing device may be made of a material having a 

coefficient of friction above a threshold level.  For instance, the back and/or sides of the housing 

may be made of rubber, plastic, fabric, paper, or any other material with a relatively high 

coefficient of friction (e.g., compared to glass or a smooth metal).  In one instance, the 

computing device includes a case that covers at least a portion of the housing.  In such instances, 

the case may be made of a material with a relatively high coefficient of friction.    

  A user of the computing device may perform a gesture on the front, back, and/or sides of 

the computing device.  In other words, the user may perform a gesture or user input anywhere 

along the housing or case of the computing device.  As one example, the user may perform a 

swipe, pinch, tap, double-tap, or any other type of gesture at the back of the computing device 

(e.g., using his/her finger, a stylus, or other input mechanism that makes physical contact with 

the computing device).  A user of the computing device may perform a gesture 4 by sliding his 

or her finger along the back surface of the housing of the computing device.  As illustrated in 

FIG. 1, the computing device may be logically divided into a grid of grid elements AA-NN.  

Computing device may detect the gesture as the gesture begins at a portion of the housing 
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corresponding to logical grid element BA and continues through a portion of the housing 

corresponding to logical grid element EA. 

The computing device includes one or more motion sensors configured to detect motion 

of the computing device as the input device contacts the back of computing device while 

performing gesture 4.  When the material for the housing has a relatively high coefficient of 

friction (e.g., compared to glass or a smooth metal), a user input device (e.g., a finger, a stylus, 

etc.) may briefly stick to the surface and then slide across the surface for a distance, then stick 

and slip, as the user applies a force to the housing surface via the input device.  This repeated 

stick and slip motion may cause vibrations that may be detected by the motion sensor. 

In one example, the computing device includes an IMU, which may include a 3-axis 

accelerometer and a 3-axis gyroscope.  In such examples, the IMU outputs motion data with six 

values (e.g., an acceleration value for each of the three axes and a gyroscope value for each of 

the three axes) each time the IMU samples the motion of the computing device.  The computing 

device may store the motion data as one-dimensional vector (or as any other type of data 

structure) with six sensor values or elements for each time the IMU samples the motion.  The 

IMU may sample the motion every 1 millisecond, every 2 milliseconds, every 5 milliseconds, 

and so on.  In some examples, the vector includes data for multiple samples (e.g., 10, 20, 50, 100 

samples).  In this way, the vector may include six sensor values for each of the plurality of 

samples.     

In accordance with techniques of this disclosure, the computing device applies a 

machine-learned model to the motion data to determine the attributes or characteristics of the 

user input.  The model may be trained via supervised or unsupervised learning.  In some 

examples, the model includes a neural network, such as a convolutional neural network (CNN).  

Additional examples of machine learning algorithms include clustering algorithms, decision-tree 

algorithms, regression algorithms, as only a few examples.  In one example, the computing 
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device may apply the vector of motion data to the CNN.  In other words, the input to the CNN 

includes, in some examples, a one-dimensional vector of motion data over time (e.g., the vector 

may include six values for each time the IMU is sampled within a period of time).   

The computing device may apply a multi-layer CNN to the input vector.  For example, 

the CNN may include 2, 3, 4, or more layers.  The layers may be partially or fully connected.  

For each convolution layer, the computing device applies a filter to the input for that layer.  As 

one example, the computing device may multiply the one-dimensional input vector (also referred 

to as a matrix) by a convolution filter and output a convoluted vector (or matrix) for the first 

convolution layer.  The computing device may input the convoluted vector output by the first 

layer as an input to the second layer, apply another filter, and output a new convoluted vector, 

and so on for each convolution layer of the CNN.   

The computing device may determine a plurality of attributes of the user input based on 

the CNN.  In other words, in one example, the CNN receives the one-dimensional vector (e.g., 

with six values for each sample of the IMU) as the input and outputs a plurality of values 

representative of the attributes of the user input.  In some examples, the attributes include a 

direction of the user input and a location of the user input.   

In some examples, because different attributes of the user input may affect the motion 

data simultaneously, the computing device may apply the multi-layer CNN to jointly learn the 

mappings from motion data onto these interrelated attributes in a multi-task learning paradigm.  

In one example, the computing device determines the different attributes of the user input by 

utilizing one or more shared convolutional layers, which may enable the computing device to 

detect or extract common patterns that are indicative across user input attributes.  Following the 

shared layers, in some examples, the CNN includes individual layers for each attribute of the 

user input to extract the attribute-dependent patterns.   
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In some examples, one or more outputs of the CNN include classifications of the 

attributes or characteristics of the input.  For example, the computing device may classify the 

direction of the gesture or user input.  In the example of FIG. 1, one output of the CNN classifies 

the direction of the user input as down (or top to bottom).  As another example, another output of 

the CNN classifies the locations of the user input.  For example, the output may classify the 

starting location of gesture 4 as logical grid element BA and the ending location of gesture 4 as 

logical grid element EA.  In another example, the output of the CNN includes a regression 

output.  For example, the output of the CNN may include a specific location of the user input 

(e.g., rather than a grid element).  

The computing device may perform one or more actions based on the output of the CNN.  

In one example, the computing device controls a pointer or cursor based on the gesture.  For 

example, the computing device may move the cursor around the screen as the user moves his or 

her finger along the back of the computing device.  The computing device may scroll (e.g., up, 

down, left, right) through a graphical user interface in response to detecting a scrolling gesture.  

As another example, the computing device may select different targets (e.g., icons) based on the 

gesture.  The computing device may adjust a slider based on the scrolling gesture.   

In some instances, the computing device adjusts the volume of a speaker in response to 

detecting a scrolling gesture near or on the edge or side of the computing device.  For instance, 

the computing device may increase the volume in response to detecting a scrolling gesture in one 

direction (e.g., towards the top of the device) and decrease the volume in response to detecting a 

scrolling gesture in another direction (e.g., towards the bottom of the device).  In one instance, 

the computing device controls video playback based on the scrolling gesture.  For instance, the 

computing device may rewind the video in response to detecting a scrolling gesture in one 

direction (e.g., to the left) and may advance the video forward in response to detecting a scrolling 

gesture in another direction (e.g., to the right).  In another instance, the computing device adjusts 
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a camera zoom level based on the gesture.  For instance, the computing device may increase the 

zoom level of the camera (e.g., zoom in) in response to detecting a scrolling gesture in one 

direction (e.g., towards the top of the device) and decrease the zoom level of the camera (e.g., 

zoom out) in response to detecting a scrolling gesture in another direction (e.g., towards the 

bottom of the device).   

By applying a machine-learned model (such as a CNN model) to the motion data, the 

computing device may determine one or more attributes of a touch input using existing motion 

sensors.  Utilizing motion sensors to detect touch inputs may enable the computing device to 

determine attributes of touch inputs without utilizing a touch-sensitive device, such as a 

touchscreen or touchpad.  Detecting user inputs and determining the attributes of the input 

without utilizing a touch-sensitive device may reduce the cost of the computing device and/or 

reduce the power consumed by the device, for example, by detecting user inputs without 

activating a touch-sensitive device.  Further, detecting user inputs without utilizing a touch-

sensitive device may enable the computing device to detect user inputs at locations of the 

computing device that do not include a touch-sensitive device, which may open the door to new 

functionality of the computing device.   
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