March 26, 2019

MULTIPURPOSE ACDC DCDC CONVERTER FOR ELECTRICAL VEHICLES

Verena Schwaiger

Bertrandt Ingenieurbüro GmbH

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

Recommended Citation
Schwaiger, Verena, "MULTIPURPOSE ACDC DCDC CONVERTER FOR ELECTRICAL VEHICLES", Technical Disclosure Commons, (March 26, 2019)
https://www.tdcommons.org/dpubs_series/2077

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.
MULTIPURPOSE ACDC DCDC CONVERTER FOR ELECTRICAL VEHICLES

Technical Task:
Current electric vehicles (BEVs) and hybrid vehicles (PHEV, HEV, etc.) have a vehicle architecture on the high-voltage side that includes two discrete components (AC charger and high-voltage DCDC converter). Depending on the operating point, both or only one of the components work. Driving mode: Here only the DCDC converter / charging mode works: the charger and the DCDC converter are connected in series (see figures 1-3).

Initial Situation:
The partitioning of the circuit parts into two separate components (AC charger, high-voltage DCDC converter) results in the overhead of an additional component and disadvantages in terms of cost, efficiency, weight, and error rate of the overall system.

Solution:
The invention message includes the combination of the two components 1. AC charger and 2. high-voltage DCDC converter to a new component "Multipurpose DCDC converter" (see figures 4-7). The new circuit topology allows all functionalities of the previous components 1. Charger and 2 high-voltage DCDC converters in one component. For this purpose, the transformer is equipped with one (or more) additional secondary winding. The rectifier of the 1st AC charger is replaced by a bidirectional active rectifier. This makes it possible to feed energy from the high-voltage network (800V) in the direction of the transformer.

---

Block Diagram AC Charger (Onboard Charger) – Component 1 (Onboard Charger)

Block Diagram 2-stage DCDC converter – component 2 (DCDC converter)
Energy flow in the AC charger

Block diagram AC charger (onboard charger)

Energy flow while driving
DC/DC converter only

Block diagram 2-stage DC/DC converter
Block diagram Multipurpose ACDC DCDC Converter - Component 3

Charging Mode

Energy flow with AC charging

12V electrical system

DCDC Mode

Energy flow while driving

DC/DC converter only

Active rectifier can be used in bidirectional direction as DCDC converter.

Active rectifier as DCDC converter in bidirectional direction.
Advantages:
- Increase in efficiency (overall efficiency from AC grid to DC)
- Reduce weight (only one component)
- Reduction of manufacturing costs
- Reduce complexity and error proneness
- Additional functionality such as emergency loading - customer added value
- Enables energy transfer to all voltage levels
- Additionally expandable to bidirectional AC charging option
- Increase in efficiency (overall efficiency from AC grid to DC)

Possible Applications:
- Dead vehicles of an electric car because of completely discharged battery.
- The topology also makes it possible to have another secondary winding for e.g. 48V electrical system to provide.