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ABSTRACT 

Techniques are described herein to automatically generate Frequently Asked 

Questions (FAQs) during the initial problem analysis of a given issue. The conversation 

transcripts of successfully resolved recent cases are analyzed using a supervised machine 

learning model to predict the initial problem analysis phase of a conversation and to extract 

FAQs asked during this phase. The extracted FAQs are displayed to the customer at the 

time the case is opened, thereby accelerating the problem solving process and augmenting 

the support engineer's troubleshooting capabilities. 

 

DETAILED DESCRIPTION 

The key to quickly solving a problem is first clearly understanding the problem. 

Oftentimes, support engineers in networking, manufacturing, and many other industries 

spend several hours troubleshooting an issue without asking the right set of questions to 

better understand the problem. In one example, an engineer troubleshoots a high-

availability issue in which the standby router periodically loses synchronization with the 

active router and reloads intermittently. The engineer may ask whether there is any packet 

loss or interface error. If the customer indicates that no issues have been observed in the 

local interfaces and everything else appears to be functioning normally, the engineer may 

enable debugs to troubleshoot the problem and wait for the next occurrence of the problem. 

The missing questions that could have helped solved the problem include "What is the end-

to-end network path between the two routers?"; "Are there any packet drops in any of the 

network interfaces across the end-to-end network path?"; etc.  

Today, questionnaires are systematically built by humans who have experience 

troubleshooting a given problem type. Human experts in the given technology field ask the 

right set of questions and solve problems faster. However, the experts have to manually 
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document these questions in order to share their knowledge with their peers, and the peers 

have to find the right article to identify the right questionnaire.  

Described herein is a mechanism that automatically generates contextually relevant 

Frequently Asked Questions (FAQs) for a given problem type by analyzing conversations 

that correspond to tickets in which the given problem type was successfully resolved in the 

recent past. The automatically generated questionnaire may then be presented to the 

customer and answered by the customer at the start of the support engagement process such 

that the support engineer has a very clear understanding of the problem and may start the 

troubleshooting process in the right direction from the beginning. The automatically 

generated questionnaire may also be presented to new support engineers joining the 

workforce to augment their troubleshooting capabilities. 

Every support engagement (e.g., ticket, case, etc.) has a wealth of data including 

the customer's description of the symptoms as well as data captured prior to and during the 

issue resolution process. In addition to the diagnostics data, another highly valuable data 

set is the interaction between the customer and the support engineer (case owner). The 

conversation between the customer and engineer goes through a series of phases during the 

lifecycle of a case (e.g., initial problem analysis, troubleshooting, resolution, monitoring). 

Typically, support engineers review the data provided by the customer and then 

provide an initial set of questions to better understand the problem. This is often referred 

to as initial problem or situation analysis. For lower-severity issues, the questions and 

corresponding answers exchanged across email help the engineer identify next steps for 

troubleshooting. Oftentimes, this initial exchange may require several minutes or even 

hours, resulting in delayed time to understand, troubleshoot, and resolve the problem. Also, 

if the support engineer is new to the problem space, he/she must manually reference past 

cases and/or articles to understand the right set of questions to be asked in order to correctly 

solve the reported issue. 

Customers, partners, and support engineers have now started to use persistent 

virtual collaboration spaces as the primary communication channel for a given support 

engagement. The virtual space is associated with the support case and accelerates the 

problem solving process by enabling support engineers to ask initial questions and obtain 

answers in real-time while continuing to ask questions to the void until the reported 
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problem is clearly understood. The transcript of the virtual space conversation is easily 

retrievable from the communications platform using Application Programming Interfaces 

(APIs). The knowledge gained from the conversation analysis of transcripts of past cases 

that were successfully resolved provides techniques to automate generation of initial 

questions. This automation approach minimizes the possibility of taking a wrong 

troubleshooting path (by a new support engineer) and avoids any delays in understanding 

the problem by presenting the generated questions to the customer immediately after the 

case is opened and requesting them to answer while waiting for a support engineer to be 

assigned to the ticket. 

Figure 1 below illustrates three example steps. 

 

The first step is to train a classification Machine Learning (ML) model to predict 

whether a given message belongs to initial problem analysis phase. The second step is 

involves prediction and extraction. The classification label may be predicted for each 

message within the conversation transcript of a recent successfully resolved case. This is 

used to detect the timestamp at which the conversation transitions from the "initial problem 

analysis" phase to the "troubleshooting" phase in the issue resolution process. This module 

also extracts questions from the messages that are part of the initial problem analysis phase. 

New questions are added to the questions database. If the question already exists, the 

frequency counter for that question is incremented. 
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In the third step, when a customer opens a case, the case management application 

identifies the issue type, looks up the top FAQ(s) that were auto-generated in the previous 

step, and displays them to the customer user. The customer answers these questions based 

on the information available to accelerate the problem solving process. 

The training data source includes the conversation transcripts which are extracted 

from the collaboration virtual space used by the customer and the support engineer to 

communicate about the issue. This set of transcripts from closed cases forms the data 

corpus on which a neural network model is trained to predict when the phase changes from 

Initial Problem Analysis (P1) to Troubleshooting (P2), etc. in a case's lifecycle. A 

supervised classification approach may help solve this. 

The data preparation phase involves cleaning the extracted data and imputing 

missing information. This entails removing bot-generated messages, removing columns 

which are not significant contributors to model-building, and detecting and removing 

greeting related messages such as "Hello," "Good Morning," etc. The greeting removal is 

implemented using a Natural Language Processing (NLP) intent classification model, 

trained on language models available in the open source domain. The sentences in the 

transcripts are then tokenized and converted to vector notation using word embedding 

techniques. The scoring mode used is Term Frequency - Inverse Document Frequency (TF-

IDF) for each word in the sentence. Thus, each human-uttered sentence from the dataset is 

now encoded as a 15,000-element vector, where each element indicates the 

presence/absence of that word. The absence of a word causes the corresponding element 

to be assigned a value of zero, and the presence of a word is indicated by its corresponding 

TF-IDF score in that element. This completes the data transformation stage. 

The model itself is a neural network of multiple dense layers with 512 neurons in 

each layer. A dropout metric may be used at each layer in order to avoid overfitting. A 

cross entropy loss function is used to reduce misclassifications between the predicted phase 

and the actual labeled phase. 

The successfully resolved cases that correspond to a given issue type in the recent 

past are first identified. The same preprocessing steps as in the training phase are applied 

to the conversation transcript of the identified cases. Now, the set of sentences in the 

transcript is converted into a matrix. Each row in the matrix is the vector notation of the 
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sentence over the 15,000-element vocabulary. This matrix forms the input to the neural 

network classification model developed in the "Training" step.  

The model predicts each message within the given transcript as belonging to "initial 

problem analysis," "troubleshooting phase," etc. The system identifies the change in phase 

transition within the transcript and outputs the timestamps of the beginning and ending 

messages of the initial problem analysis phase. Figure 2 below illustrates an example in 

which a conversation transcript has 100 messages. The first ten messages are classified as 

messages that belong to the initial problem analysis phase and the rest are classified as the 

troubleshooting phase. In this case, the timestamps of messages 1 and 10 are provided as 

outputs of this module. 

 

The beginning and ending timestamps are then used to generate a sub-transcript 

which contains only the messages that belong to the "initial problem analysis" phase (P1). 

Each of these messages are then processed to determine whether they are a question.  

If it is a question, it is added to the "Questions Database". The Questions Database 

is a collection of user questions organized into clusters as shown in Figure 3 below, each 

cluster representing conceptually similar questions, which may be the many different ways 

users ask the same question with regard to a specific type of issue. All questions will be 
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converted to vector notation using word embedding techniques. This will ensure that 

similar words (and thus questions) will occupy close spatial positions. Similarity between 

questions may then be calculated using distance metrics like cosine similarity. 

 

A collection may be a set of conceptually similar questions. For each collection, 

the different ways a user can ask the same question (size of the cluster) may be tracked 

along with the number of times each question has been asked (using a frequency counter), 

as illustrated in Figure 4 below. 
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For example, with reference to the first collection from the Question Cluster 

Database shown in Figure 4, the users may be asked questions regarding the version of the 

phone in three different ways (e.g., Q1a: "What is the version of your Internet Protocol (IP) 

phone?"; Q1b: "What software version are you running on the phone?"; and Q1c: "Which 

Operating System (OS) version is installed on the phone?"). Each question when converted 

to its corresponding word vector will occupy a point in vector space, as represented by the 

labeled points in Figure 3. The cluster size (three) represents the variety in the number of 

ways the same question is asked. There may be cases in which the question was framed in 

the same manner by different people. This may be recorded in the frequency counter for 

each question. The frequency counter shown in Figure 4 is a cumulative metric. In this 

example, the frequency counter is 100, which is actually maintained on a per question basis 

as a set (e.g., {35,50,15} for {Q1a,Q1b,Q1c}, indicating that question Q1a was asked 

twenty-five times, Q1b fifty times, and Q1c fifteen times. 
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The customer uses a case management application to submit a new case. The case 

management application processes the problem description, determines the issue type (the 

case submission form may also have a field for issue type) and then identifies the top FAQs 

during problem analysis of this specific issue type. This "top frequency" metric is a 

combination of the cluster size and frequency counter as described in the "Extraction" step 

above. These FAQs are then presented to the user as shown in Figure 5 below. The 

customer user answers the questions based on the current situation. This information is thus 

readily available to the assigned engineer to quickly understand the problem and begin with 

further questions or proceed with the troubleshooting process. The support engagement 

may also be triggered from a network assurance system. Similar customer experience may 

be provided through the network assurance system website. 

 

Figure 5 

In summary, techniques are described herein to automatically generate FAQs 

during the initial problem analysis of a given issue. The conversation transcripts of 

successfully resolved recent cases are analyzed using a supervised machine learning model 

to predict the initial problem analysis phase of a conversation and to extract FAQs asked 

during this phase. The extracted FAQs are displayed to the customer at the time the case is 

opened, thereby accelerating the problem solving process and augmenting the support 

engineer's troubleshooting capabilities. 
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