
Technical Disclosure Commons

Defensive Publications Series

June 21, 2018

Flow-graph analysis of system calls for exploit
detection
Anthony Desnos

Elena Petrova

Alexandre Boulgakov

Richard Neal

Zubin Mithra

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Desnos, Anthony; Petrova, Elena; Boulgakov, Alexandre; Neal, Richard; and Mithra, Zubin, "Flow-graph analysis of system calls for
exploit detection", Technical Disclosure Commons, (June 21, 2018)
https://www.tdcommons.org/dpubs_series/1271

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1271?utm_source=www.tdcommons.org%2Fdpubs_series%2F1271&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Flow-graph analysis of system calls for exploit detection

ABSTRACT

One technique of improving computer security is to test an executable for presence of

malicious code without running the executable. The present disclosure enables such detection of

malicious code by leveraging the observation that system calls (syscalls) are a main pathway for

exploits, since syscalls are an important way for a program to interact with an operating system

kernel. The disclosure describes techniques to compute a control flow graph for the executable

comprising only syscalls. A number of independent control flows are produced from such a

control flow graph. Graph analysis/matching techniques are applied to detect exploit patterns in

these syscall graphs, e.g., based on matching against known syscall exploit sequences for

different vulnerabilities. In this manner, a potentially malicious executable is detected and can be

isolated without exposing a computer system to damage.

KEYWORDS

● system call

● syscall

● static analysis

● exploit detection

● control flow graph

● kernel

● OS vulnerability

● malware detection

2

Desnos et al.: Flow-graph analysis of system calls for exploit detection

Published by Technical Disclosure Commons, 2018

BACKGROUND

One technique of improving computer security is to test an executable for presence of

malicious code without running the executable. Examples of malicious code include code that

attempts to exploit known vulnerabilities within an operating system.

DESCRIPTION

Fig. 1: Detecting known exploit patterns in binary executables

Fig. 1 illustrates detection of known exploit patterns in binary executables without

running the executable. Static analysis is used to compute the whole-program control flow graph

(CFG) (102) for the given binary file. Whole-program means the CFGs corresponding to called

functions are embedded into the overall CFG such that entire system behavior is captured in a

single graph.

All instructions other than those resulting in system calls (syscalls) are turned into

no-operations (no-ops) (104). Syscall instructions include, e.g., architecture specific instructions

3

Defensive Publications Series, Art. 1271 [2018]

https://www.tdcommons.org/dpubs_series/1271

such as SYSCALL, SYSENTER, SVC, SWI, etc., and also include call or branch instructions to

dynamically linked code, e.g., calls to known functions in dynamically linked libraries, identified

by their names.

The result is a control flow graph comprising only syscalls. This graph encodes a superset

of all syscall sequences that the given binary can result in. A number of graphs are produced

from the binary, each corresponding to a potential independent control flow (106). While these

are notionally separate graphs, since they are generated from the same executable, they may have

significant overlap. Techniques of graph matching via merging, described in [1], can be applied,

resulting in a single graph with multiple rooted subgraphs.

A syscall graph is produced for each entry point. Such entry points include, e.g., exported

functions for a library or the entry point for an executable, and any functions that are passed to

threading libraries to be run asynchronously. There is a one-one correspondence between graphs

and entry points such that each graph is rooted at a single entry point.

Example: An executable includes the function foo() which calls the function bar(), and is

defined as follows.

foo(){ bar();}

Both foo() and bar() are entry points. A graph corresponding to foo() is produced

that is rooted at “foo” and contains both “foo” (as the root) and “bar”. A graph corresponding

to bar() is produced that is rooted at “bar”.

4

Desnos et al.: Flow-graph analysis of system calls for exploit detection

Published by Technical Disclosure Commons, 2018

Depending on the context the binary is used in when it is executed, syscall sequences

from a control flow corresponding to a syscall graph may be interleaved, and multiple instances

of each flow can be interleaved with each other as well.

Since syscalls are the main way for a program to interact with the OS kernel, many

exploits rely on a particular sequence of syscalls to get the kernel into a particular bad state.

Different sequences or patterns of sequences can be found, constructed or evaluated to determine

whether they correspond to exploits for different vulnerabilities. Graph analysis and matching

techniques are applied to detect known exploit patterns in the syscall graphs (108). In effect,

specifications of a particular behavior of interest are matched against a superset of behaviors that

are extracted from an executable file of interest using static analysis.

Different software implementations exploiting the same vulnerability perform the same

actions, thus allowing detection of variations and different implementations of an exploit from

the same patterns. Static analysis thus allows all potential behaviors of a binary to be explored

efficiently. Analysis of syscall flow graphs allows specifically targeting program behaviors that

are likely to be involved in kernel exploits and that must be present in a malicious binary file.

In this manner, the techniques of this disclosure can be applied to analyze executable or

shared library files to determine if such executables include malicious code that attempts to

exploit known vulnerabilities. Such data can be used in making security-related decisions about

the executables. Online application stores or other platforms that offer third-party applications or

software can use the techniques to test software that is submitted for download or sale to

end-users. The techniques also find applicability in the computer security industry, e.g., within

anti-virus, anti-malware, and other security products.

5

Defensive Publications Series, Art. 1271 [2018]

https://www.tdcommons.org/dpubs_series/1271

CONCLUSION

One technique of improving computer security is to test an executable for presence of

malicious code without running the executable. The present disclosure enables such detection of

malicious code by leveraging the observation that system calls (syscalls) are a main pathway for

exploits, since syscalls are an important way for a program to interact with an operating system

kernel. The disclosure describes techniques to compute a control flow graph for the executable

comprising only syscalls. A number of independent control flows are produced from such a

control flow graph. Graph analysis/matching techniques are applied to detect exploit patterns in

these syscall graphs, e.g., based on matching against known syscall exploit sequences for

different vulnerabilities. In this manner, a potentially malicious executable is detected and can be

isolated without exposing a computer system to damage.

REFERENCES

[1] Boulgakov, Alexandre, “Efficient multi-graph or rooted subgraph matching via merging,”

Technical Disclosure commons, (June 18, 2018). Available online at

https://www.tdcommons.org/dpubs_series/1252

[2] T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe, “FDR3: A modern

refinement checker for CSP,” Tools and Algorithms for the Construction and Analysis of Systems

pp. 187-201. Available online at http://www.cs.ox.ac.uk/projects/fdr/

[3] P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, A. W. Roscoe, “Modelling and analysis of

security protocols: the CSP approach,” Addison-Wesley (2001)

[4] A. Boulgakov, T. Gibson-Robinson, A. W. Roscoe, “Computing maximal weak and other

bisimulations”, Formal Aspects of Computing 28(2) pp. 381-407

6

Desnos et al.: Flow-graph analysis of system calls for exploit detection

Published by Technical Disclosure Commons, 2018

https://www.tdcommons.org/dpubs_series/1252
http://www.cs.ox.ac.uk/projects/fdr/

[5] A. Boulgakov, “Improving scalability of exploratory model checking,” PhD thesis,

University of Oxford, 2016. Available online at

https://ora.ox.ac.uk/objects/uuid:76acb8bf-52e7-4078-ab4f-65f3ea07ba3d

7

Defensive Publications Series, Art. 1271 [2018]

https://www.tdcommons.org/dpubs_series/1271

https://ora.ox.ac.uk/objects/uuid:76acb8bf-52e7-4078-ab4f-65f3ea07ba3d

	Technical Disclosure Commons
	June 21, 2018

	Flow-graph analysis of system calls for exploit detection
	Anthony Desnos
	Elena Petrova
	Alexandre Boulgakov
	Richard Neal
	Zubin Mithra
	Recommended Citation

	tmp.1529551132.pdf.o_ZFM

