
Technical Disclosure Commons

Defensive Publications Series

May 10, 2018

Side-effect free program state evaluation
Erik Luo

Aleksei Koziatinskii

Yang Guo

Follow this and additional works at: https://www.tdcommons.org/dpubs_series

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications
Series by an authorized administrator of Technical Disclosure Commons.

Recommended Citation
Luo, Erik; Koziatinskii, Aleksei; and Guo, Yang, "Side-effect free program state evaluation", Technical Disclosure Commons, (May 10,
2018)
https://www.tdcommons.org/dpubs_series/1189

https://www.tdcommons.org?utm_source=www.tdcommons.org%2Fdpubs_series%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series?utm_source=www.tdcommons.org%2Fdpubs_series%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://www.tdcommons.org/dpubs_series/1189?utm_source=www.tdcommons.org%2Fdpubs_series%2F1189&utm_medium=PDF&utm_campaign=PDFCoverPages
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US
http://creativecommons.org/licenses/by/4.0/deed.en_US

Side-effect free program state evaluation

ABSTRACT

The ability to inspect the state of program execution at a specified stage by the evaluation

of a specific expression is crucial for operations such as debugging. Executing the expression of

interest may itself result in changing the program state that the evaluation of the expression is

supposed to inspect. Such side effects of evaluating the expression on the program state reduce

the effectiveness and reliability of debugging by evaluating the expression to inspect program

state. The techniques of this disclosure enable evaluation of an expression for inspecting program

state that is free from side effects.

KEYWORDS

● Debugging

● Program state

● JavaScript

● Directed graph

BACKGROUND

The ability to inspect the state of program execution at a specified stage by the evaluation

of a specific expression is crucial for operations such as debugging. In programming languages

such as JavaScript, executing the expression of interest may itself result in changing the program

state that the evaluation of the expression is supposed to inspect. Some IDEs may provide

enhanced debugging capabilities which reevaluating the expression at specific time intervals, e.g.

300 milliseconds. This capability, without ensuring that each evaluation is side effect free, may

significantly change inspected program state and make debugging ineffective. Side effects of

2

Luo et al.: Side-effect free program state evaluation

Published by Technical Disclosure Commons, 2018

evaluating the expression on the state of the program reduce the effectiveness and reliability of

debugging and require extra efforts on part of a developer or test engineer.

DESCRIPTION

The techniques of this disclosure enable the evaluation of an expression in a

programming language, such as JavaScript, that is free from any side effects. For example, such

side effects include observable changes in the state of the program resulting from the evaluation

of an expression meant to inspect the state of the program. To achieve evaluation that is free

from side effects, a programming instruction and a built-in function is prevented from changing

the program state during the evaluation of the specified expression. The execution of an

expression that attempts a change that produces any side effects is terminated.

Fig. 1: Directed graph representation of program state

The techniques involve representing the program state as a directed graph, with each

vertex of the directed graph representing an object within the program state. Fig. 1 illustrates an

example directed graph of a program state with vertices a and b, representing objects A and B,

respectively, such that:

a = {};

b = {a:a};

The direction of the arrow linking vertex b to vertex a indicates that object B can be obtained

using the reference to the object A.

3

Defensive Publications Series, Art. 1189 [2018]

https://www.tdcommons.org/dpubs_series/1189

All new objects created during the evaluation of the expression of interest are considered

temporary objects and located inside an independent component of the program state graph. The

program instruction and the built-in function that creates the directed edge in the program state

graph shown in Fig. 1 between object A and object B is enabled to terminate execution of an

expression if it attempts to create a directed edge from a non-temporary object to a temporary

object, thus avoiding side effects.

Further, the program instruction and the built-in function that changes a function object

may potentially lead to side effects in the program state of the receivers of the function object,

i.e., the arguments of the function call. The evaluation of an expression that attempts to call the

function with a non-temporary object as a receiver, i.e., an argument to the function, is

terminated, thus avoiding side effects.

The techniques of this disclosure support side-effect-free evaluation for nearly all

expressions and built-in functions via temporary objects instead of a limited subset of side-

effect-free functions for non-temporary objects. In a practical implementation of the techniques

of this disclosure, program instructions and built-in functions that may create a directed edge in

the directed graph of the program state are instrumented to abide by the operational constraints

described above. Similarly, program instructions and built-in functions that may involve

potential side effects on their receivers are instrumented to abide by the operational constraints

described above.

The techniques of this disclosure enable the above operations by considering all object

allocation during the evaluation of the expression of interest as temporary. The temporary objects

are allocated and reused in a runtime heap profiler within a virtual machine. Built-in into most

JavaScript virtual machines, the heap profiler is reused to track temporary objects during

4

Luo et al.: Side-effect free program state evaluation

Published by Technical Disclosure Commons, 2018

evaluation. The heap profiler starts when the evaluation of the expression of interest begins and

stops upon completion of the evaluation. Since any evaluation attempts that may cause side

effects lead to termination of the execution of the expression, an expression that reaches

completion of the evaluation is free from side effects on program state.

The heap profiler is utilized only for side-effect-free evaluation, thus avoiding runtime

overhead for the evaluation of other expressions. Moreover, checks of side effects of functions

can be carried out by reusing existing corresponding hooks for the function call that are provided

by common debuggers for stepping purposes. When not stepping through the code, the hooks

typically involve minimal to zero runtime overhead. Additionally, for programming languages

that feature low-level instructions, the corresponding handlers may be patched only during side-

effect-free evaluation. As a result, implementing the techniques of this disclosure for side-effect-

free evaluation requires little runtime overhead. The techniques can be implemented for

evaluation of programs in several programming languages.

The techniques of this disclosure enable features that allow the user to type expressions

that provide live results with guarantees that the program state will not change due to evaluating

the expression to obtain the live result.

CONCLUSION

Executing the expression of interest may itself result in changing the program state that

the evaluation of the expression is supposed to inspect. Such side effects of evaluating the

expression on the state of the program reduce the effectiveness and reliability of debugging. The

techniques of this disclosure support side-effect-free evaluation for nearly all expressions and

built-in function via temporary objects instead of a limited subset of side-effect-free functions for

non-temporary objects. The expressions and built-in functions are instrumented to terminate the

5

Defensive Publications Series, Art. 1189 [2018]

https://www.tdcommons.org/dpubs_series/1189

evaluation of expressions that attempt to create a directed edge from a non-temporary object to a

temporary object within the program state or call a function with a non-temporary object as a

receiver. The techniques utilize existing features of debuggers and programming languages and

can be implemented with minimal runtime overhead.

6

Luo et al.: Side-effect free program state evaluation

Published by Technical Disclosure Commons, 2018

	Technical Disclosure Commons
	May 10, 2018

	Side-effect free program state evaluation
	Erik Luo
	Aleksei Koziatinskii
	Yang Guo
	Recommended Citation

	tmp.1525879380.pdf.BvrgW

