March 01, 2017

Full-Session Auction For Video Ads

Tuna Toksoz

Thomas Price

Follow this and additional works at: http://www.tdcommons.org/dpubs_series

Recommended Citation
Toksoz, Tuna and Price, Thomas, "Full-Session Auction For Video Ads", Technical Disclosure Commons, (March 01, 2017)
http://www.tdcommons.org/dpubs_series/406

This work is licensed under a Creative Commons Attribution 4.0 License.
This Article is brought to you for free and open access by Technical Disclosure Commons. It has been accepted for inclusion in Defensive Publications Series by an authorized administrator of Technical Disclosure Commons.
FULL-SESSION AUCTION FOR VIDEO ADS

ABSTRACT

A video monetization system and method are disclosed to run an auction to maximize the revenue from a sequence of multiple video ads, while minimizing the impact on the user's watch time. The system uses two predictive models, implemented with a machine learning algorithm that also takes into account user behavior/history. The method uses whole-commercial session features like the number of ads shown, the length of each ad, and the sequence of ads for selecting optimal commercial breaks to display to a user. Online video platforms may use full-session auction to optimize the entire sequence of video ads that they show within commercial breaks, in order to maximize revenue effectively.

BACKGROUND

Online streaming video services, like traditional television, generally inject commercial breaks into content. An auction is often run to select the highest-bidded video ad to show in each available slot. Some online video services provide skip functionality on ads. However, existing ads systems of online media are not adapted to optimize multiple ads. Optimization of video ads is needed for effective monetization of longer form content, which often relies on the additional revenue that comes from monetization with several sequences of ads interrupting the content at various commercial breaks. The optimization problem becomes important since an ads system requires flexibility on how many video ads to show in a sequence, and the length of ad to show in each spot. Thus there is a need for a better method to optimize multiple video ads to maximize revenue while minimizing the user annoyance that can cause users to stop watching

DESCRIPTION

This disclosure presents a video monetization system and a method that runs an auction to maximize the revenue from a sequence of multiple video ads, while minimizing
the impact on the user's watch time. The system chooses the optimal commercial breaks to show to a user, where a commercial break includes a specific sequence of video ads. The system depicted in FIG. 1 uses two predictive models, implemented with a machine learning algorithm that also takes into account user behavior/history. The method uses whole-commercial-session features like the number of ads shown, the length of each ad, and the sequence of ads for selecting optimal video ad commercials.

FIG. 1: System for full-session auction for video ads

The first model predicts watch rates for the ads. The ad that is not watched signifies that the ad was skipped or failed to register some viewability metric that is indicative of whether users are really watching the ad. Thus an ad that is watched more would rate higher. The second model predicts the negative impact of ads by showing the impact of each potential commercial break on the user's overall watch time of the video platform. For
example, the model may correlate the number of ad breaks in the videos that the user
watched, and translates this into future opportunity to show video ad commercials.

The system may learn from the predictive models that a certain type of user may
tolerate only very brief commercial breaks before abandoning the platform. The system may
therefore decide to show only very short commercial breaks to maximize the long term value
of the user to the platform. The method may or may not be implemented in a system that
allows users to skip commercial breaks, perhaps for a fee. The system might also learn that a
particular ad or class of ad often causes users to skip, and that it is therefore revenue optimal
to place this ad near the end of the commercial break.

Online media services may use this system as they transition from monetizing short
videos with single ads, to long-form content. If controls are provided to users to skip
commercial breaks, as they can currently skip individual pre roll ads, the system can optimize
ad delivery and revenue. Other video platforms may use this type of auction to optimize the
entire sequence of video ads that they show within commercial breaks, in order to maximize
revenue effectively.

Further to the descriptions above, a user may be provided with controls allowing the
user to make an election as to both if and when systems, programs or features described
herein may enable collection of user information or history (e.g., information about a user’s
social network, social actions or activities, profession, a user’s preferences, or a user’s current
location), and if the user is sent content or communications from a server. In addition, certain
data may be treated in one or more ways before it is stored or used, so that personally
identifiable information is removed. For example, a user’s identity may be treated so that no
personally identifiable information can be determined for the user, or a user’s geographic
location may be generalized where location information is obtained (such as to a city, ZIP
code, or state level), so that a particular location of a user cannot be determined. Thus, the
user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.